IFI16 and AIM2 are important DNA sensors in antiviral immunity. To characterize these two molecules in a woodchuck model, which is widely used to study hepatitis B virus (HBV) infection, we cloned and analyzed the complete coding sequences (CDSs) of woodchuck IFI16 and AIM2, and found that AIM2 was highly conserved in mammals, whereas the degree of sequence identity between woodchuck IFI16 and its mammalian orthologues was low. IFI16 and IFN-β were upregulated following VACV ds 70 mer transfection, while AIM2 and IL-1β were upregulated following poly (dA:dT) transfection, both in vitro and in vivo; IFI16-targeted siRNA decreased the transcription of IFI16 and IFN-β stimulated by VACV ds 70 mer, and AIM2 siRNA interference downregulated AIM2 and IL-1β transcripts stimulated by poly (dA:dT), in vitro, suggesting that woodchuck IFI16 and AIM2 may play pivotal roles in the DNA-mediated induction of IFN-β and IL-1β, respectively. IFI16 and AIM2 transcripts were upregulated in the liver and spleen following acute WHV infection, while IFI16 was downregulated in the liver following chronic infection, implying that IFI16 and AIM2 may be involved in WHV infection. These data provide the basis for the study of IFI16- and AIM2-mediated innate immunity using the woodchuck model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4926060 | PMC |
http://dx.doi.org/10.1038/srep28776 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!