Classification and sequence learning are relevant capabilities used by living beings to extract complex information from the environment for behavioral control. The insect world is full of examples where the presentation time of specific stimuli shapes the behavioral response. On the basis of previously developed neural models, inspired by Drosophila melanogaster, a new architecture for classification and sequence learning is here presented under the perspective of the Neural Reuse theory. Classification of relevant input stimuli is performed through resonant neurons, activated by the complex dynamics generated in a lattice of recurrent spiking neurons modeling the insect Mushroom Bodies neuropile. The network devoted to context formation is able to reconstruct the learned sequence and also to trace the subsequences present in the provided input. A sensitivity analysis to parameter variation and noise is reported. Experiments on a roving robot are reported to show the capabilities of the architecture used as a neural controller.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1142/S0129065716500350 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!