A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Parametrization of halogen bonds in the CHARMM general force field: Improved treatment of ligand-protein interactions. | LitMetric

Parametrization of halogen bonds in the CHARMM general force field: Improved treatment of ligand-protein interactions.

Bioorg Med Chem

Computer-Aided Drug Design Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, United States. Electronic address:

Published: October 2016

A halogen bond is a highly directional, non-covalent interaction between a halogen atom and another electronegative atom. It arises due to the formation of a small region of positive electrostatic potential opposite the covalent bond to the halogen, called the 'sigma hole.' Empirical force fields in which the electrostatic interactions are represented by atom-centered point charges cannot capture this effect because halogen atoms usually carry a negative charge and therefore interact unfavorably with other electronegative atoms. A strategy to overcome this problem is to attach a positively charged virtual particle to the halogen. In this work, we extend the additive CHARMM General Force Field (CGenFF) to include such interactions in model systems of phenyl-X, with X being Cl, Br or I including di- and trihalogenated species. The charges, Lennard-Jones parameters, and halogen-virtual particle distances were optimized to reproduce the orientation dependence of quantum mechanical interaction energies with water, acetone, and N-methylacetamide as well as experimental pure liquid properties and relative hydration free energies with respect to benzene. The resulting parameters were validated in molecular dynamics simulations on small-molecule crystals and on solvated protein-ligand complexes containing halogenated compounds. The inclusion of positive virtual sites leads to better agreement across experimental observables, including preservation of ligand binding poses as a direct result of the improved representation of halogen bonding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053860PMC
http://dx.doi.org/10.1016/j.bmc.2016.06.034DOI Listing

Publication Analysis

Top Keywords

charmm general
8
general force
8
force field
8
halogen
6
parametrization halogen
4
halogen bonds
4
bonds charmm
4
field improved
4
improved treatment
4
treatment ligand-protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!