Occurrence of entomopathogenic fungi on phylloplanes in Tilia × europaea crowns between 1 and 13 m was assessed in urban parks. Prevalence of fungal infections in ladybirds (Coleoptera: Coccinellidae) collected from Tilia × europaea was assessed to determine whether fungi found on phylloplanes also occurred as infections in ladybirds. Isaria spp. was most abundant on phylloplanes (mean colony forming units (CFU) per leaf ± SE, 0.33 ± 0.03) followed by Beauveria spp. (0.22 ± 0.02 CFU per leaf) and Lecanicillium spp. (0.19 ± 0.02 CFU per leaf). Densities of inoculum were higher in inner crowns and decreased with height, although Lecanicillium spp. peaked at 5-7 m. Upper phylloplane surfaces harboured higher densities of Isaria spp. and Beauveria spp. than lower surfaces, whereas Lecanicillium spp. was equally distributed. Most prevalent on ladybirds were Isaria spp. (20.6% Harmonia axyridis; 4.8% natives), Lecanicillium spp. (13.6% H. axyridis; 4.8% natives), with fewer Beauveria spp. infections (2.6% H. axyridis). Molecular identification revealed Beauveria bassiana, B. pseudobassiana, Isaria farinosa and Lecanicillium muscarium among isolates of both tree and ladybird origin. Tilia × europaea phylloplanes support a diverse assemblage of entomopathogenic fungal species with a different prevalence in coccinellids compared to their relative abundance in this habitat.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsec/fiw143 | DOI Listing |
Fungal Syst Evol
December 2024
Plant Microbe Interaction Research Team, BIOTEC, National Science and Technology Development Agency (NSTDA) 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand.
During entomopathogenic fungal surveys conducted in Thailand, 15 specimens tentatively classified under were identified. To gain a comprehensive understanding of their taxonomy, molecular phylogenies using combined LSU, , , and sequence data, together with morphological examination of several spp. from previous studies were conducted.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Republic of Korea.
Plant root and soil-associated microbiomes are influenced by niches, including bulk and rhizosphere soil. In this work, we collected bulk and rhizosphere soil samples at four potato developmental stages (leaf growth, flowering, tuber elongation and harvest) to identify whether rhizosphere microbiota are structured in a growth stage-dependent manner. The bacterial and fungal microbiota showed significant temporal differences in the rhizosphere and bulk soil.
View Article and Find Full Text PDFAllergol Select
May 2024
Laboratory Dr. Wisplinghoff.
Arch Microbiol
April 2024
Department of Plant Protection, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
Entomopathogenic fungi play a significant role in regulating insect populations in nature and have potential applications in pest management strategies in different regions. Citrus spp. are among the important horticultural products in northern Iran, and the orchards are affected by different insect pests, especially mealybugs.
View Article and Find Full Text PDFPlant Dis
January 2024
Chinese Academy of Agriculture Institute of Urban Agriculture, 531356, No. 36 Lazi East St, Xinglong St, Chengdu, Sichuan, China, 610000;
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!