Transport of the outer dynein arm complex to cilia requires a cytoplasmic protein Lrrc6.

Genes Cells

Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation (JST), 1-3 Yamada-oka, Suita, Osaka, 565-0871, Japan.

Published: July 2016

Lrrc6 encodes a cytoplasmic protein that is expressed specifically in cells with motile cilia including the node, trachea and testes of the mice. A mutation of Lrrc6 has been identified in human patients with primary ciliary dyskinesia (PCD). Mutant mice lacking Lrrc6 show typical PCD defects such as hydrocephalus and laterality defects. We found that in the absence of Lrrc6, the morphology of motile cilia remained normal, but their motility was completely lost. The 9 + 2 arrangement of microtubules remained normal in Lrrc6(-/-) mice, but the outer dynein arms (ODAs), the structures essential for the ciliary beating, were absent from the cilia. In the absence of Lrrc6, ODA proteins such as DNAH5, DNAH9 and IC2, which are assembled in the cytoplasm and transported to the ciliary axoneme, remained in the cytoplasm and were not transported to the ciliary axoneme. The IC2-IC1 interaction, which is the first step of ODA assembly, was normal in Lrrc6(-/-) mice testes. Our results suggest that ODA proteins may be transported from the cytoplasm to the cilia by an Lrrc6-dependent mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gtc.12380DOI Listing

Publication Analysis

Top Keywords

outer dynein
8
cytoplasmic protein
8
motile cilia
8
absence lrrc6
8
remained normal
8
normal lrrc6-/-
8
lrrc6-/- mice
8
oda proteins
8
cytoplasm transported
8
transported ciliary
8

Similar Publications

Interpreting Variants of Uncertain Significance in PCD: Abnormal Splicing Caused by a Missense Variant of DNAAF3.

Mol Genet Genomic Med

January 2025

The State Key Laboratory for Complex Severe and Rare Diseases, the State Key Sci-Tech Infrastructure for Translational Medicine, Peking Union Medical College Hospital, Beijing, China.

Background: Primary ciliary dyskinesia (PCD) is a rare autosomal recessive disorder characterized by dysfunction of motile cilia. While approximately 50 genes have been identified, around 25% of PCD patients remain genetically unexplained; elucidating the pathogenicity of specific variants remains a challenge.

Methods: Whole exome sequencing (WES) and Sanger sequencing were conducted to identify potential pathogenic variants of PCD.

View Article and Find Full Text PDF

Peste des petits ruminants virus (PPRV), a single-stranded negative-sense RNA virus with an envelope, belongs to the Morbillivirus in the Paramyxoviridae family and is prevalent worldwide. PPRV infection causes fever, stomatitis, diarrhoea, pneumonia, abortion and other symptoms in small ruminants, with a high mortality rate that poses a significant threat to the sustainability and productivity of the small ruminant livestock sector. The PPRV virus particles have a diameter of approximately 400-500 nm and are composed of six structural proteins: nucleocapsid protein (N), phosphoprotein (P), envelope matrix protein (M), fusion protein (F), haemagglutinin protein (H) and large protein (L).

View Article and Find Full Text PDF

Cilia and flagella play a crucial role in the development and function of eukaryotes. The activity of thousands of dyneins is precisely regulated to generate flagellar motility. The complex proteome (600+ proteins) and architecture of the structural core of flagella, the axoneme, have made it challenging to dissect the functions of the different complexes, like the regulatory machinery.

View Article and Find Full Text PDF

is associated with primary ciliary dyskinesia in humans. -knockout (-/- mice develop acute hydrocephalus shortly after birth owing to impaired ciliary motility and cerebrospinal fluid (CSF) stagnation. In contrast to chronic adult-onset hydrocephalus observed in other models, this rapid ventricular enlargement indicates additional factors beyond CSF stagnation.

View Article and Find Full Text PDF
Article Synopsis
  • - A study evaluated the management of primary ciliary dyskinesia (PCD) in pediatric participants using a multicenter, observational approach, collecting data on therapy types and their annual usage.
  • - Over 137 participants were monitored for 13 years, finding that nearly all received antibiotics, with a significant number using cephalosporins and chronic azithromycin, and older patients tended to utilize more therapies.
  • - Results indicated that therapy usage varies significantly, often correlating with age and specific types of ciliary defects, highlighting the need for more disease-specific research to better understand the effectiveness of these treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!