Efficacy of histotripsy combined with rt-PA in vitro.

Phys Med Biol

Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA.

Published: July 2016

Histotripsy, a form of therapeutic ultrasound that uses the mechanical action of microbubble clouds for tissue ablation, is under development to treat chronic deep vein thrombosis (DVT). We hypothesize that combining thrombolytic agents with histotripsy will enhance clot lysis. Recombinant tissue plasminogen activator (rt-PA) and rt-PA-loaded echogenic liposomes that entrain octafluoropropane microbubbles (OFP t-ELIP) were used in combination with highly shocked histotripsy pulses. Fully retracted porcine venous clots, with similar features of DVT occlusions, were exposed either to histotripsy pulses alone (peak negative pressures of 7-20 MPa), histotripsy and OFP t-ELIP, or histotripsy and rt-PA. Microbubble cloud activity was monitored with passive cavitation imaging during histotripsy exposure. The power levels of cavitation emissions from within the clot were not statistically different between treatment types, likely due to the near instantaneous rupture and destruction of OFP t-ELIP. The thrombolytic efficacy was significantly improved in the presence of rt-PA. These results suggest the combination of histotripsy and rt-PA could serve as a potent therapeutic strategy for the treatment of DVT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563443PMC
http://dx.doi.org/10.1088/0031-9155/61/14/5253DOI Listing

Publication Analysis

Top Keywords

ofp t-elip
12
histotripsy
8
histotripsy pulses
8
histotripsy rt-pa
8
rt-pa
5
efficacy histotripsy
4
histotripsy combined
4
combined rt-pa
4
rt-pa vitro
4
vitro histotripsy
4

Similar Publications

Histotripsy is a form of focused ultrasound therapy that uses the mechanical activity of bubbles to ablate tissue. While histotripsy alone degrades the cellular content of tissue, recent studies have demonstrated it effectively disrupts the extracellular structure of pathologic conditions such as venous thrombosis when combined with a thrombolytic drug. Rather than relying on standard administration methods, associating thrombolytic drugs with an ultrasound-triggered echogenic liposome vesicle will enable targeted, systemic drug delivery.

View Article and Find Full Text PDF

The development of adjuvant techniques to improve thrombolytic efficacy is important for advancing ischemic stroke therapy. We characterized octafluoropropane and recombinant tissue plasminogen activator (rt-PA)-loaded echogenic liposomes (OFP t-ELIP) using differential interference and fluorescence microscopy, attenuation spectroscopy, and electrozone sensing. The loading of rt-PA in OFP t-ELIP was assessed using spectrophotometry.

View Article and Find Full Text PDF

Echogenic liposomes loaded with the thrombolytic recombinant tissue-type plasminogen activator (rt-PA) are under development for the treatment of ischemic stroke. These agents are designed to co-encapsulate cavitation nuclei to promote bubble activity in response to ultrasound exposure, and to enable localized delivery of thrombolytic. Stable cavitation improves the efficacy of the thrombolytic through enhanced fluid mixing.

View Article and Find Full Text PDF

Efficacy of histotripsy combined with rt-PA in vitro.

Phys Med Biol

July 2016

Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA.

Histotripsy, a form of therapeutic ultrasound that uses the mechanical action of microbubble clouds for tissue ablation, is under development to treat chronic deep vein thrombosis (DVT). We hypothesize that combining thrombolytic agents with histotripsy will enhance clot lysis. Recombinant tissue plasminogen activator (rt-PA) and rt-PA-loaded echogenic liposomes that entrain octafluoropropane microbubbles (OFP t-ELIP) were used in combination with highly shocked histotripsy pulses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!