In the present study we compared the postprandial glycemic and satiety responses of different dietary polysaccharides when added in milk (2% M.F.). The objective of this study was to evaluate different polysaccharides against postprandial glucose, appetite responses and food intake at subsequent meal. In a repeated measures design, 30 females (18-30 years) consumed 250 ml milk 2% M.F. (control), or milk with carrageenan (2.5 g), guar gum (2.5 g) and alginate (2.5 g), followed by an ad libitum pizza meal after 120 min. Alginate and guar gum addition resulted in lower caloric intake at subsequent pizza meal. The post-treatment (0-120 min) glucose and average appetite were suppressed by alginate and guar gum (p < 0.0001), with more pronounced effect of guar gum. However, alginate resulted in lower blood glucose (p < 0.0001) compared with control and carrageenan during post-treatment. Alginate and guar gum added beverages would be beneficial in short-term regulation of postprandial glycemia and satiety.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09637486.2016.1191446DOI Listing

Publication Analysis

Top Keywords

guar gum
12
dietary polysaccharides
8
polysaccharides milk
8
food intake
8
intake subsequent
8
pizza meal
8
alginate guar
8
acute effects
4
effects dietary
4
milk
4

Similar Publications

Sustained Release of Curcumin from Cur-LPs Loaded Adaptive Injectable Self-Healing Hydrogels.

Polymers (Basel)

December 2024

National Engineering Research Center for Healthcare Devices, Guangdong Provincial Key Laboratory of Medical Electronic Instruments and Materials, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China.

Biological tissue defects are typically characterized by various shaped defects, and they are prone to inflammation and the excessive accumulation of reactive oxygen species. Therefore, it is still urgent to develop functional materials which can fully occupy and adhere to irregularly shaped defects by injection and promote the tissue repair process using antioxidant and anti-inflammatory mechanisms. Herein, in this work, phenylboronic acid modified oxidized hyaluronic acid (OHAPBA) was synthesized and dynamically crosslinked with catechol group modified glycol chitosan (GCHCA) and guar gum (GG) into a hydrogel loaded with curcumin liposomes (Cur-LPs) which were relatively uniformly distributed around 180 nm.

View Article and Find Full Text PDF

In this study, carrot (orange and black) powder substitution (0-15%) and different dough applications (guar gum (GG) addition, pregelatinization (PG) and a PG + GG combination) were researched in gluten-free pasta preparation to improve the bioactive components and technological properties. Some quality attributes and bioactive components of the pasta were determined. Black carrot powder substitution into the pasta revealed rich functional properties with higher total dietary fiber (TDF), Ca, K, Mg, P and total phenolic content (TPC) than orange carrot powder.

View Article and Find Full Text PDF

The synergistic effect of natural guar gum (GG), konjac gum (KGM) and sodium 2-oxopropanoic acid sodium (2-OAS) to designed a novel physical cross-linked three-dimensional network structure GG@2-OAS@KGM as a carrier of active microorganisms for mold and yeast sensitive detection. At the ratio of 6:2:2 (w/w/w), GG@2-OAS@KGM possessed a uniform porous structure. After treatment for 120 h, the hydrogel exhibits higher water holding capacity (WHC, 71.

View Article and Find Full Text PDF
Article Synopsis
  • Recent developments in wound dressings focus on natural bioactives like guar gum (GG) and gallic acid (GA), which can enhance healing compared to traditional materials.
  • The study created a GA-GG conjugate through a polymerization process, confirming its successful integration and beneficial structural changes via various spectroscopic analyses.
  • A polyelectrolyte complex (PEC) film made with chitosan showed strong antioxidant and antimicrobial properties, high swelling rates, and excellent wound healing efficacy, achieving 94.5% closure in comparison to untreated controls.
View Article and Find Full Text PDF

Physical and rheological properties of agglomerated milk protein isolate-guar gum mixtures: effect of binder type and concentration.

Food Sci Biotechnol

January 2025

Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang, 10326 Gyeonggi Korea.

Article Synopsis
  • The study focused on how adding sugar and sugar alcohol binders in the fluidized-bed agglomeration process affects the physical properties of milk protein isolate (MPI) and guar gum (GG) mixtures.
  • The agglomerated mixtures, known as AMGs, were found to have larger, more porous particles that improved solubility and flowability compared to non-agglomerated mixtures (NMG).
  • However, AMGs had lower apparent viscosity and viscoelastic properties than NMG, which decreased further with more binder concentration, indicating a change in interaction between the protein and gum.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!