This study's goal was to assess the diagnostic value of the USPIO-(ultra-small superparamagnetic iron oxide) enhanced magnetic resonance imaging (MRI) in detection of vulnerable atherosclerotic plaques in abdominal aorta in experimental atherosclerosis. Thirty New Zealand rabbits were randomly divided into two groups, Group A and Group B. Each group comprised 15 animals which were fed with high cholesterol diet for 8 weeks and then subjected to balloon-induced endothelial injury of the abdominal aorta. After another 8 weeks, animals in Group B received adenovirus carrying p53 gene that was injected through a catheter into the aortic segments rich in plaques. Two weeks later, all rabbits were challenged with the injection of Chinese Russell's viper venom and histamine. Pre-contrast images and USPIO-enhanced MRI images were obtained after pharmacological triggering with injection of USPIO for 5 days. Blood specimens were taken for biochemical and serological tests at 0 and 18 weeks. Abdominal aorta was histologically studied. The levels of serum ICAM-1 and VCAM-1 were quantified by ELISA. Vulnerable plaques appeared as a local hypo-intense signal on the USPIO-enhanced MRI, especially on T2*-weighted sequences. The signal strength of plaques reached the peak at 96 h. Lipid levels were significantly (p < 0.05) higher in both Group A and B compared with the levels before the high cholesterol diet. The ICAM-1 and VCAM-1 levels were significantly (p < 0.05) higher in Group B compared with Group A. The USPIO-enhanced MRI efficiently identifies vulnerable plaques due to accumulation of USPIO within macrophages in abdominal aorta plaques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12013-015-0591-y | DOI Listing |
Invest Radiol
January 2025
From the Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands (I.T.M., M.C.M., S.Y., R.v.d.E., A.V., E.J.S., J.J.H., T.W.J.S.); and Department of Radiology, NYU Langone Health, New York, NY (T.K.B.).
Objectives: Accurate lymph node (LN) staging is crucial for managing upper abdominal cancers. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging effectively distinguishes healthy and metastatic LNs through fat/water and -weighted imaging. However, respiratory motion artifacts complicate detection of abdominal LNs.
View Article and Find Full Text PDFEur Radiol
December 2024
Department of Medical Imaging, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
Objectives: To assess 3-Tesla (3-T) ultra-small superparamagnetic iron oxide (USPIO)-enhanced MRI in detecting lymph node (LN) metastases for resectable adenocarcinomas of the pancreas, duodenum, or periampullary region in a node-to-node validation against histopathology.
Methods: Twenty-seven consecutive patients with a resectable pancreatic, duodenal, or periampullary adenocarcinoma were enrolled in this prospective single expert centre study. Ferumoxtran-10-enhanced 3-T MRI was performed pre-surgery.
Int J Biomed Imaging
April 2024
Department of Physics, Northeastern University, Boston, MA, USA.
Background: Ferumoxytol (Ferahame, AMAG Pharmaceuticals, Waltham, MA) is increasingly used off-label as an MR contrast agent due to its relaxivity and safety profiles. However, its potent T2 relaxivity limits achievable T1-weighted positive contrast and leads to artifacts in standard MRI protocols. Optimization of protocols for ferumoxytol deployment is necessary to realize its potential.
View Article and Find Full Text PDFInvest Radiol
July 2024
From the Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands (C.J.A.T., A.S.F., J.J.A.v.A., A.V., B.W.J.P., T.H., J.O.B., M.C.M., T.W.J.S.); Department of Radiology, Ziekenhuis Gelderse Vallei, Ede, the Netherlands (A.S.F.); Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany (S.O., H.H.Q., T.W.J.S.); High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany (S.O., H.H.Q.); and Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany (S.O.).
Background: Accurate detection of lymph node (LN) metastases in prostate cancer (PCa) is a challenging but crucial step for disease staging. Ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI) enables distinction between healthy LNs and nodes suspicious for harboring metastases. When combined with MRI at an ultra-high magnetic field, an unprecedented spatial resolution can be exploited to visualize these LNs.
View Article and Find Full Text PDFInvest Radiol
June 2024
From the Department of Medical Imaging-Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (M.G.M.S., A.V., P.Z., J.O.B., M.G., M.R., T.W.J.S.); Prosper Prostate Cancer Clinics, Nijmegen/Eindhoven, the Netherlands (D.M.S., J.P.M.S.); Department of Urology, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands (D.M.S.); Andros Clinics, Medical Imaging, Arnhem, the Netherlands (J.O.B.); Department of Urology, Radboud University Medical Center, Nijmegen, the Netherlands (J.P.M.S.); and Department of Pathology, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands (H.V.N.K.-V.).
Objectives: Two advanced imaging modalities used to detect lymph node (LN) metastases in prostate cancer patients are prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography and ultrasmall superparamagnetic iron oxide (USPIO)-enhanced magnetic resonance imaging (MRI). As these modalities use different targets, a subnodal comparison is needed to interpret both their correspondence and their differences. The aim of this explorative study was to compare ex vivo 111 In-PSMA μSPECT images with high-resolution 7 T USPIO μMR images and histopathology of resected LN specimens from prostate cancer patients to assess the degree of correspondence at subnodal level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!