Effects of Al(3+) Ions on Formation of Silica Framework and Surface Active Sites for SO4(2-) Ions.

Langmuir

Department of Chemistry, Faculty of Science, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.

Published: July 2016

Al(3+) ions were introduced into silica framework at 318 K in order to make active Al sites for SO4(2-) by the addition of aqueous sodium silicate solution to aqueous sulfuric acid solution of Al2(SO4)3. The (27)Al and (29)Si NMR spectra of aluminosilicates were measured at 278 K with reaction time. (29)Si NMR spectra were analyzed by the multivariate curve resolution. The addition of Al(3+) ions to aqueous silicate solution promoted gel formation. Small amounts of Al(3+) ions were incorporated as a four-coordinated complex at early stage of polymerization reaction of silicates and during subsequent reaction six-coordinated Al complex increased, suggesting reversible conversion between 4- and 6-coordinated complexes. SO4(2-) ions interact with positive surfaces of aluminosilicates and are specifically adsorbed on the surface sites of 6-coordinated Al(3+) species, which may be stabilized on silicate surfaces as [Al(H2O)5SO4](+).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b01940DOI Listing

Publication Analysis

Top Keywords

al3+ ions
16
silica framework
8
active sites
8
sites so42-
8
so42- ions
8
silicate solution
8
29si nmr
8
nmr spectra
8
ions
6
effects al3+
4

Similar Publications

Progress in Research on Metal Ion Crosslinking Alginate-Based Gels.

Gels

December 2024

State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Jinan 250353, China.

Alginate is an important natural biopolymer and metal ion-induced gelation is one of its most significant functional properties. Alginate-based hydrogels crosslinked with metal ions are commonly utilized in the food, biomedical, tissue engineering, and environment fields. The process of metal ion-induced alginate gelation has been the subject of thorough research over the last few decades.

View Article and Find Full Text PDF

Structural and luminescent properties of a Cr/Sm doped GdAlO orthorhombic perovskite for solid-state lighting applications.

RSC Adv

January 2025

Departamento de Física Aplicada, Facultade de Óptica e Optometríae Instituto de Materiais (iMATUS) Campus Vida, Universidade de Santiago de Compostela (USC) 15782 Galicia Spain.

The Cr and Sm doped GdAlO perovskite with formula GdSmAlCrO, was synthesized a solid-state reaction method, and its structure, morphology, and photoluminescence properties were thoroughly investigated. The compound crystallizes in the orthorhombic space group, with Cr transition-metal ions substituting Al in the octahedral symmetry site, and Sm lanthanide (rare-earth) ions occupying the tetrahedral site. The material's morphology and chemical composition homogeneity were evaluated through Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray analysis.

View Article and Find Full Text PDF

A portable paper-based surface enhanced Raman scattering platform for Al sensing.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

College of Chemistry, Liaoning University, Shenyang 110036, China. Electronic address:

The adverse effects of Al ions on human health necessitate the development of ultra-sensitive detection methods for Al ions. In this regard, the compact and portable design of the detection substrate is of utmost importance for achieving in-situ and sensitive detection of Al ions. In our study, we have successfully developed a surface-enhanced Raman scattering (SERS) platform with gold nanoparticles (Au NPs) that was modified with histidine (His) and 4-mercaptobenzoic acid (4-MBA) for the SERS detection of Al ions.

View Article and Find Full Text PDF

Dual-mode luminescence and colorimetric sensing for Al and Fe/Fe ions in water using a zinc coordination polymer.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand. Electronic address:

A zinc(II) coordination polymer, [Zn(Hdhtp)(2,2'-bpy)(HO)] (1), has been utilized as a dual-mode luminescence-colorimetric sensor (Hdhtp = 2,5-dihydroxy terephthalate and 2,2'-bpy = 2,2'-bipyridine). The presence of hydroxyl groups in Hdhtp can promote excited-state intra- and intermolecular proton transfer (ESIPT) phenomena. Therefore, compound 1, which displays high stability in aqueous environments, exhibits a strong green-yellow photoluminescence.

View Article and Find Full Text PDF

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!