Background/aims: Systemic lupus erythematosus (SLE) is a heterogeneous chronic inflammatory autoimmune disorder, in the pathogenesis of which miRNAs play a versatile function. The purpose of this study was to investigate the effect of miRNA-410 on the pathogenesis of SLE in T cells of SLE patients.
Methods: Real-time PCR was used to test the mRNA levels of miRNA-410 in SLE patients and healthy controls. ELISA analysis was performed to examine the production levels of IL-10. Luciferase Assay was used to confirm the targeting effect of miRNA-410 on 3'UTR of STAT3 mRNA.
Results: We found that the expression level of miR-410 in T cells of SLE patients was decreased comparing to that in healthy controls, whereas overexpression of miR-410 significantly reduced the expression levels of IL-10. Furthermore, miR-410 suppresses the transcription activity of STAT3 by binding directly to the 3 'UTR of STAT3 mRNA. Moreover, silence of STAT3 down regulated IL-10 expression in CD3+ T cells.
Conclusion: Our results demonstrate that miR-410 is the key regulatory factor in the pathogenesis of SLE by regulating the expression of IL-10 through targeting STAT3. These data suggest a novel function of miR-410 and bring new insight into understanding the complex mechanisms involved in SLE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000445625 | DOI Listing |
Am J Respir Cell Mol Biol
January 2025
University of Colorado Denver School of Medicine, Aurora, Colorado, United States;
Whether early life acetaminophen (APAP) exposures injure the developing lung is controversial. We sought to correlate murine pulmonary developmental expression profiles of to susceptibility to APAP exposure. P14 C57BL/6 mice were exposed to APAP (140 mg/kg x 1, IP) and assessed for evidence of a histologic, metabolic, functional, and/or transcriptional pulmonary response.
View Article and Find Full Text PDFOral Dis
January 2025
Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
Background: This study aimed to investigate potential cellular senescence inhibitory genes (CSIGs) and discover novel therapeutic targets in head and neck squamous cell carcinoma.
Methods: Dysregulated CSIGs were identified based on The Cancer Genome Atlas (TCGA) and the Human Aging Genomic Resources (HAGR) database. Prognostic value and immune infiltration were assessed through bioinformatic analysis.
RSC Adv
January 2025
Department of Pharmaceutical Sciences, Maharshi Dayanand University Rohtak 124001 India
Cancer is a major global concern. Despite considerable advancements in cancer therapy and control, there are still large gaps and requirements for development. In recent years, various naturally occurring anticancer drugs have been derived from natural resources, such as alkaloids, glycosides, terpenes, terpenoids, flavones, and polyphenols.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Urology, Tangshan Gongren Hospital, 27 Wenhua Road, Tangshan, 063000, Hebei, People's Republic of China.
Regulatory T cells (Tregs) have been found to be related to immune therapeutic resistance in kidney cancer. However, the potential Tregs-related genes still need to be explored. Our study found that patients with high Tregs activity show poor prognosis.
View Article and Find Full Text PDFCardiovasc Toxicol
January 2025
Department of Cardiovascular Medicine, The Affiliated Panyu Central Hospital of Guangzhou Medical University (Cardiovascular Diseases Research Institute of Panyu District), No. 8, Fuyu East Road, Qiaonan Street, Panyu District, Guangzhou, 511400, China.
The mortality rate of cardiovascular and cerebrovascular diseases ranks first among all causes. This study elucidated the role and potential mechanism of the NLRC5 gene in atherosclerosis (AS). We enrolled patients (number = 30) diagnosed with AS and healthy volunteers (number = 30) as controls from our hospital.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!