A novel nanoheteroepitaxy method, namely, the grouped and multistep nanoheteroepitaxy (GM-NHE), is proposed to attain a high-quality gallium nitride (GaN) epilayer by metal-organic vapor phase epitaxy. This method combines the effects of sub-100 nm nucleation and multistep lateral growth by using a low-cost but unique carbon nanotube mask, which consists of nanoscale growth windows with a quasi-periodic 2D fill factor. It is found that GM-NHE can facilely reduce threading dislocation density (TDD) and modulate residual stress on foreign substrate without any regrowth. As a result, high-quality GaN epilayer is produced with homogeneously low TDD of 4.51 × 10(7) cm(-2) and 2D-modulated stress, and the performance of the subsequent 410 nm near-ultraviolet light-emitting diode is greatly boosted. In this way, with the facile fabrication of nanomask and the one-off epitaxy procedure, GaN epilayer is prominently improved with the assistance of nanotechnology, which demonstrates great application potential for high-efficiency TDD-sensitive optoelectronic and electronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.6b05636 | DOI Listing |
Discov Nano
December 2024
Department of Photonics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
This study fabricated 10 μm chip size μLEDs of blue-light GaN based epilayers structure with different mesa processes using dry etching and ion implantation technology. Two ion sources, As and Ar, were applied to implant into the LED structure to achieve material isolation and avoid defects on the mesa sidewall caused by the plasma process. Excellent turn-on behavior was obtained in both ion-implanted samples, which also exhibited lower leakage current compared to the sample fabricated by the dry etching process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Samsung Display Co., LTD., Yongin-si 17113, Republic of Korea.
A series of experiments have elucidated the primary defects in group-III nitride epilayers, identifying vacancy clusters due to cation migration at interfaces to mitigate strained lattice. While the occurrence of these defects is well-documented, the underlying electronic mechanisms driving vacancy agglomeration in nitrides and their alloys remain poorly understood. In this study, we uncovered a previously unreported ground state of two metal vacancies driven by the migration of kinetically unstable nitrogen atoms using an approach.
View Article and Find Full Text PDFLight Sci Appl
October 2024
Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, 410082, Changsha, China.
Discov Nano
June 2024
Institute of Electrics, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan, ROC.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!