Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nanog plays a crucial role in the maintenance of stem cell pluripotency. Annual full regeneration of deer antlers has been shown to be a stem cell-based process, and antler stem cells (ASCs) reportedly express Nanog. In the present study, we found that Nanog RNA expressed by ASCs was a pseudogene (Nanog-ps). The coding sequence of Nanog-ps was 93.1% homologous to that of bovine Nanog, but with two missing nucleotides after position 391. Deletion of the two nucleotides in Nanog-ps resulted in a frame-shift mutation, suggesting that Nanog-ps would not encode a normal Nanog protein. Overexpression of Nanog-ps failed to affect downstream genes of Nanog or to enhance cell proliferation in the ASCs. However, this pseudogene was transcribed in the ASCs and encoded a nuclear protein; the expression levels of Nanog-ps were also related to the degree of stemness in antler cells. Here, we reported this pseudogene, because it could serve as a useful marker for identifying ASCs and evaluating the degree of their stemness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/dna.2016.3303 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!