S-adenosyl-l-methionine (AdoMet) is an essential enzyme cosubstrate in fundamental biology with an expanding range of biocatalytic and therapeutic applications. We report the design, synthesis, and evaluation of stable, functional AdoMet isosteres that are resistant to the primary contributors to AdoMet degradation (depurination, intramolecular cyclization, and sulfonium epimerization). Corresponding biochemical and structural studies demonstrate the AdoMet surrogates to serve as competent enzyme cosubstrates and to bind a prototypical class I model methyltransferase (DnrK) in a manner nearly identical to AdoMet. Given this conservation in function and molecular recognition, the isosteres presented are anticipated to serve as useful surrogates in other AdoMet-dependent processes and may also be resistant to, and/or potentially even inhibit, other therapeutically relevant AdoMet-dependent metabolic transformations (such as the validated drug target AdoMet decarboxylase). This work also highlights the ability of the prototypical class I model methyltransferase DnrK to accept non-native surrogate acceptors as an enabling feature of a new high-throughput methyltransferase assay.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026608 | PMC |
http://dx.doi.org/10.1021/acschembio.6b00348 | DOI Listing |
Int J Mol Sci
January 2025
Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA.
Cadmium (Cd) is a pervasive heavy metal pollutant released into the environment through industrial activities such as mining, smelting, and agricultural runoff. This study aimed to investigate the molecular and metabolic impacts of Cd exposure on the silk glands of , a species renowned for producing silk with exceptional mechanical properties. Cd accumulation in spider bodies and silk glands was significantly higher in the low- and high-Cd groups compared to controls, with a dose- and time-dependent increase.
View Article and Find Full Text PDFCell Rep Med
January 2025
Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. Electronic address:
Multiple myeloma is a clonal plasma cell (PC) dyscrasia that arises from precursors and has been studied utilizing approaches focused on CD138 cells. By combining single-cell RNA sequencing (scRNA-seq) with scB-cell receptor sequencing (scBCR-seq), we differentiate monoclonal/neoplastic from polyclonal/normal PCs and find more dysregulated genes, especially in precursor patients, than we would have by analyzing bulk PCs. To determine whether this approach can identify oncogenes that contribute to disease pathobiology, mitotic arrest deficient-2 like-1 (MAD2L1) and S-adenosylmethionine synthase isoform type-2 (MAT2A) are validated as targets with drug-like molecules that suppress myeloma growth in preclinical models.
View Article and Find Full Text PDFTrends Biochem Sci
January 2025
Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX USA. Electronic address:
S-Adenosylmethionine (SAM) is the primary methyl donor for numerous cellular methylation reactions. Its central role in methylation and involvement with many pathways link its availability to the regulation of cellular processes, the dysregulation of which can contribute to disease states, such as cancer or neurodegeneration. Emerging evidence indicates that intracellular SAM levels are maintained within an optimal range by a variety of homeostatic mechanisms.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Department of Bioinformatics, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
Epigenetic dysregulation is a common feature of cancer. Promoter demethylation of tumor-promoting genes and global DNA hypomethylation may trigger tumor progression. Epigenetic changes are unstable; thus, research has focused on detecting remedies that target epigenetic regulators.
View Article and Find Full Text PDFHomozygous MTAP deletion occurs in ~15% of cancers, making them vulnerable to decreases in the concentration of S-adenosylmethionine (SAM). AG-270/S095033 is an oral, potent, reversible inhibitor of methionine adenosyltransferase 2 A (MAT2A), the enzyme primarily responsible for the synthesis of SAM. We report results from the first-in-human, phase 1 trial of AG-270/S095033 as monotherapy in patients with advanced malignancies (ClinicalTrials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!