Nuclear magnetic resonance (NMR) spectroscopy has the intrinsic capabilities to investigate proteins in native environments. In general, however, NMR relies on non-natural protein purity and concentration to increase the desired signal over the background. We here report on the efficient and specific hyperpolarization of low amounts of a target protein in a large isotope-labeled background by combining dynamic nuclear polarization (DNP) and the selectivity of protein interactions. Using a biradical-labeled ligand, we were able to direct the hyperpolarization to the protein of interest, maintaining comparable signal enhancement with about 400-fold less radicals than conventionally used. We could selectively filter out our target protein directly from crude cell lysate obtained from only 8 mL of fully isotope-enriched cell culture. Our approach offers effective means to study proteins with atomic resolution in increasingly native concentrations and environments.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201603205DOI Listing

Publication Analysis

Top Keywords

dynamic nuclear
8
nuclear polarization
8
target protein
8
protein
5
selective protein
4
protein hyperpolarization
4
hyperpolarization cell
4
cell lysates
4
lysates targeted
4
targeted dynamic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!