The application of homotopy perturbation method (HPM) for solving systems of linear equations is further discussed and focused on a method for choosing an auxiliary matrix to improve the rate of convergence. Moreover, solving of convection-diffusion equations has been developed by HPM and the convergence properties of the proposed method have been analyzed in detail; the obtained results are compared with some other methods in the frame of HPM. Numerical experiment shows a good improvement on the convergence rate and the efficiency of this method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4897428PMC
http://dx.doi.org/10.1155/2014/143512DOI Listing

Publication Analysis

Top Keywords

application homotopy
8
homotopy perturbation
8
perturbation method
8
solving systems
8
systems linear
8
linear equations
8
method
5
method solving
4
equations application
4
method hpm
4

Similar Publications

This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.

View Article and Find Full Text PDF
Article Synopsis
  • Biomagnetic fluid dynamics (BFD) focuses on the behavior of bio-fluids, like blood, impacted by magnetic fields, which is important for medical applications such as targeted medication delivery and tumor treatment.
  • This study examines blood flow dynamics using trihybrid nanoparticles in a catheterized artery, factoring in various electromagnetic influences and propulsion mechanisms.
  • Key findings include that increasing Hall and ion-slip parameters boosts blood velocity, modifies entropy generation, and shows that modified hybrid nano-blood forms smaller, more manageable clumps compared to pure blood, with longer cilia enhancing recovery of these clumps.
View Article and Find Full Text PDF

The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.

View Article and Find Full Text PDF

The current research deals with analytical analysis of Marangoni convection on ethylene glycol base hybrid nanofluid two-dimension flow with viscous dissipation through a porous medium, which have some important application in mechanical, civil, electronics, and chemical engineering. Two types of nanoparticles one is sliver and other is graphene oxide and ethylene glycol is used as base fluid in this research work. The authors applied appropriate transformations to convert a collection of dimension form of nonlinear partial differential equations to dimensionless form of nonlinear ordinary differential equations.

View Article and Find Full Text PDF

This paper revisits the distribution of thermodynamic variables within initial protoplanets formed via gravitational instability (GI) across a broad mass spectrum ranging from (where denotes 1 Jupiter mass, equal to g), using the Homotopy Analysis Method (HAM), a novel approach in this context. Concerning heat transfer within the protoplanets, consideration is given to the convective mode. Our findings reveal a noteworthy alignment between the results obtained via the HAM, utilizing only the first four terms (third approximation), and numerical outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!