Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly. Late-stage AMD is characterized by choroidal neovascularization (CNV). miR-93 appears to play a role in regulating vascular endothelial growth factor-A (VEGF-A), a known factor involved in neovascularization. Understanding its biological significance might enable development of therapeutic interventions for diseases like AMD. We aimed to determine the role of miR-93 in AMD using a laser-induced CNV mouse model. CNV was induced by laser photocoagulation in C57BL/6 mice. The CNV mice were transfected with scrambled miR or miR-93 mimic. The treatment effect was assessed by fundus photography and fluorescein angiography and confirmed by choroidal flatmount. The expression of miR-93 and VEGF-A in ocular tissues was analysed by quantitative polymerase chain reaction (qPCR) and Western blot. The overexpression effects of miR-93 were also proved on human microvascular endothelial cells (HMECs). Significantly decreased expression of miR-93 was observed by qPCR analysis in CNV mice compared to untreated mice (p < 0.05). VEGF-A messenger RNA (mRNA) and protein expression were upregulated with CNV; these changes were ameliorated by restoration of miR-93 (p < 0.05). CNV was reduced after miR-93 transfection. Transfection of miR-93 reduced the proliferation of HMECs (p < 0.01), but no significant changes were observed in 2D capillary-like tube formation (p > 0.05) and migration (p > 0.05) compared with that in the untreated cells. miR-93 has been shown to be a negative modulator of angiogenesis in the eye. All together, these results highlight the therapeutic potential of miR-93 and suggest that it may contribute as a putative therapeutic target for AMD in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13105-016-0496-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!