Gastric cancer (GC) remains the third most common cause of cancer deaths worldwide and carries a high rate of metastatic risk contributing to the main cause of treatment failure. An accumulation of data has resulted in a better understanding of the molecular network of GC, however, gaps still exist between the unique bio-resources and clinical application. MicroRNAs are an important part of non-coding RNAs and behave as major regulators of tumour biology, alongside their well-known roles as intrinsic factors of gene expression in cellular processes, via their post-transcriptional regulation of components of signalling pathways in a coordinated manner. Deregulation of the miR-1, -133 and -206 family plays a key role in tumorigenesis, progression, invasion and metastasis. This review aims to provide a summary of recent findings on the miR-1, -133 and -206 family in GC and how this knowledge might be exploited for the development of future miRNA-based therapies for the treatment of GC.

Download full-text PDF

Source
http://dx.doi.org/10.3892/or.2016.4908DOI Listing

Publication Analysis

Top Keywords

mir-1 -133
12
-133 -206
12
-206 family
12
gastric cancer
8
insights roles
4
roles mir-1
4
family gastric
4
cancer review
4
review gastric
4
cancer remains
4

Similar Publications

MicroRNAs (miRNAs), also known as microribonucleic acids, are small molecules found in specific tissues that are essential for maintaining proper control of genes and cellular processes. Environmental factors, such as physical exercise, can modulate miRNA expression and induce targeted changes in gene transcription. This article presents an overview of the present knowledge on the principal miRNAs influenced by physical activity in different tissues and bodily fluids.

View Article and Find Full Text PDF

Myocarditis is a non-ischemic condition with a heterogeneous etiology, clinical course and prognosis. The most common etiology of myocarditis are viral infections, whereas the most severe complications are acute and chronic heart failure and sudden cardiac death. The heterogeneous clinical course of the disease, as well as the availability and costs of diagnostic tools such as cardiac magnetic resonance and endomyocardial biopsy, hinder the diagnosis of myocarditis and its underlying cause.

View Article and Find Full Text PDF

CCND2 Modified mRNA Activates Cell Cycle of Cardiomyocytes in Hearts With Myocardial Infarction in Mice and Pigs.

Circ Res

September 2023

Department of Biomedical Engineering, School of Medicine, School of Engineering (J.S., L.W., R.C.M., G.P.W., Y.-A.L., Y.W., Y.Z., J.Z.), University of Alabama at Birmingham.

Background: Experiments in mammalian models of cardiac injury suggest that the cardiomyocyte-specific overexpression of CCND2 (cyclin D2, in humans) improves recovery from myocardial infarction (MI). The primary objective of this investigation was to demonstrate that our specific modified mRNA translation system (SMRTs) can induce CCND2 expression in cardiomyocytes and replicate the benefits observed in other studies of cardiomyocyte-specific CCND2 overexpression for myocardial repair.

Methods: The CCND2-cardiomyocyte-specific modified mRNA translation system (cardiomyocyte SMRTs) consists of 2 modRNA constructs: one codes for CCND2 and contains a binding site for L7Ae, and the other codes for L7Ae and contains recognition elements for the cardiomyocyte-specific microRNAs miR-1 and miR-208.

View Article and Find Full Text PDF

Extracellular vesicles, such as exosomes, are secreted by skeletal muscle tissues and may play a role in physiological adaptations induced by exercise. Endurance exercise changes the microRNA (miRNA) profile of circulating extracellular vesicles; however, the effects of resistance exercise are unknown. In this study, we examined the effect of resistance exercise as electrical pulse stimulation (EPS)-induced muscle contraction on the miRNA and mRNA profiles of circulating extracellular vesicles in mice using a comprehensive RNA sequencing-based approach.

View Article and Find Full Text PDF

Purpose Of The Research: Endurance training can modify signaling and gene expression pathways that play a pivotal role in determining the phenotype of the fibers. The present study aimed to investigate the effects of endurance training on the expression of some myomiRs and related genes in slow and fast twitch muscles.

Methods: Twenty healthy male adult Wistar rats (281 ± 14 g) were randomized to either control (n = 10) or treated (n = 10).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!