An evaluation of Minor Groove Binders as anti-lung cancer therapeutics.

Bioorg Med Chem Lett

WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom.

Published: August 2016

A series of 47 structurally diverse MGBs, derived from the natural product distamycin, was evaluated for anti-lung cancer activity by screening against the melanoma cancer cell line B16-F10. Five compounds have been found to possess significant activity, more so than a standard therapy, Gemcitabine. Moreover, one compound has been found to have an activity around 70-fold that of Gemcitabine and has a favourable selectivity index of greater than 125. Furthermore, initial studies have revealed this compound to be metabolically stable and thus it represents a lead for further optimisation towards a novel treatment for lung cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2016.06.040DOI Listing

Publication Analysis

Top Keywords

anti-lung cancer
8
evaluation minor
4
minor groove
4
groove binders
4
binders anti-lung
4
cancer
4
cancer therapeutics
4
therapeutics series
4
series structurally
4
structurally diverse
4

Similar Publications

The present research aimed to assess the anti-cancer effects of the polysaccharide fraction (SJP) isolated from . The release of immune-activating cytokines, including IL-6, IL-12, and TNF-α, was markedly stimulated by the SJP in a concentration-dependent manner within the range of 1 to 100 µg/mL. Furthermore, the prophylactic intravenous () and per os () injection of SJP boosted the cytolytic activity mediated by NK cells and CTLs against tumor cells.

View Article and Find Full Text PDF

The search for new anticancer compounds is a major focus for researchers in chemistry, biology, and medicine. Cancer affects people of all ages and regions, with rising incidence rates. It does not discriminate by age or gender, making it a significant threat to humanity.

View Article and Find Full Text PDF

Design, synthesis, and in vitro antitumor evaluation of novel benzimidazole acylhydrazone derivatives.

Mol Divers

January 2025

State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.

This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.

View Article and Find Full Text PDF

Intravenously administered nanoparticles (NPs) often bind with plasma proteins, forming the protein corona that promotes rapid systemic clearance, a primary challenge in nanomedicine. In this study, we developed a pH- and GSH-sensitive "stealth" nanodelivery system, PTX@NPs-aPD1-IL, for sequential drug release. By using a biocompatible choline-based ionic liquid (IL) as the coating for NPs, the interaction and adsorption of NPs with serum proteins were reduced, achieving targeted delivery to the lung organ and increasing drug accumulation.

View Article and Find Full Text PDF

Gemcitabine (GEM) is an antitumor drug approved by the US FDA in 1996. It is used to treat cancer and solid tumours, but its effectiveness is limited by toxicity. Carboxymethyl-β-1,3-D-glucan (CMG) is a derivative of β-glucan with improved solubility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!