Plasmon Coupling Enhanced Raman Scattering Nanobeacon for Single-Step, Ultrasensitive Detection of Cholera Toxin.

Anal Chem

State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China.

Published: August 2016

AI Article Synopsis

  • The study introduces a new method called plasmon coupling enhanced Raman scattering (PCERS) nanobeacon for highly sensitive detection of cholera toxin (CT) in a single step.
  • The method utilizes specially designed plasmonic nanoparticles, which have a bilayer phospholipid coating containing Raman indicators and CT-binding ligands for optimal interaction with CT.
  • It shows significant enhancement of Raman signals during detection, indicating potential for practical use in rapid and accurate testing for cholera in various settings.

Article Abstract

We report the development of a novel plasmon coupling enhanced Raman scattering (PCERS) method, PCERS nanobeacon, for ultrasensitive, single-step, homogeneous detection of cholera toxin (CT). This method relies on our design of the plasmonic nanoparticles, which have a bilayer phospholipid coating with embedded Raman indicators and CT-binding ligands of monosialoganglioside (GM1). This design allows a facile synthesis of the plasmonic nanoparticle via two-step self-assembly without any specific modification or chemical immobilization. The realization of tethering GM1 on the surface imparts the plasmonic nanoparticles with high affinity, excellent specificity, and multivalence for interaction with CT. The unique lipid-based bilayer coated structure also affords excellent biocompatibility and stability for the plasmonic nanoparticles. The plasmonic nanoparticles are able to show substantial enhancement of the surface-enhanced Raman scattering (SERS) signals in a single-step interaction with CT, because of their assembly into aggregates in response to the CT-sandwiched interactions. The results reveal that the developed nanobeacon provides a simple but ultrasensitive sensor for rapid detection of CT with a large signal-to-background ratio and excellent reproducibility in a wide dynamic range, implying its potential for point-of-care applications in preventive and diagnostic monitoring of cholera.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.6b00944DOI Listing

Publication Analysis

Top Keywords

plasmonic nanoparticles
16
raman scattering
12
plasmon coupling
8
coupling enhanced
8
enhanced raman
8
detection cholera
8
cholera toxin
8
plasmonic
5
raman
4
scattering nanobeacon
4

Similar Publications

Anisometric plasmonic nanoparticles find applications in various fields, from photocatalysis to biosensing. However, exposure to heat or to specific chemical environments can induce their reshaping, leading to loss of function. Understanding this process is therefore relevant both for the fundamental understanding of such nano-objects and for their practical applications.

View Article and Find Full Text PDF

Layer-by-layer thin films of TiC MXene and gold nanoparticles as an ideal SERS platform.

Phys Chem Chem Phys

January 2025

Department of Chemical Engineering, Ataturk University, 25240 Erzurum, Turkey.

The combination of plasmonic metals and MXene, as a new and interesting member of the 2D material class, may provide unique advantages in terms of low cost, versatility, flexibility, and improved activity as an ideal surface-enhanced Raman spectroscopy (SERS) platform. Despite the recent progress, the present studies on the utilization of plasmonic metal/MXene-based SERS systems are quite limited and thereby benefits of the extraordinary properties of this combination cannot be realized. In this study, for the first time, we propose layer-by-layer (LbL) thin films of TiC MXene and gold nanoparticles (AuNPs) as a robust SERS platform (TiC/AuNPs).

View Article and Find Full Text PDF

Hierarchical structures of surface-accessible plasmonic gold and silver nanoparticles for SERS detection.

Soft Matter

January 2025

Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.

Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field.

View Article and Find Full Text PDF

Extreme Optical Chirality from Plasmonic Nanocrystals on a Mirror.

Nano Lett

January 2025

NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Metal nanocrystals synthesized in achiral environments usually exhibit no chiroptical effects. However, by placing nominally achiral nanocrystals 1.3 nm above gold films, we find giant chiroptical effects, reaching anisotropy factors as high as ≈ 0.

View Article and Find Full Text PDF

The plasmonic metal doping on the UV-active metal oxide nanoparticle turns the resultant plasmonic metal-metal oxide (PMMO) into visible light active and upon exogenous illumination the photogenerated energetic charge carriers and the generated reactive oxygen species (ROS, e.g. ·OH and O ) authoritatively enhances its biological and catalytic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!