Pattern formation in binary calamitic liquid crystal mixtures with positive dielectric anisotropy and negative conductivity anisotropy, which attracted attention owing to field-induced light scattering under unusual conditions many years ago, is reinvestigated in the conductive regime. Homeotropic cells with these mixtures exhibit a direct transition to isotropic electroconvection, while planar cells show a Fréedericksz transition to the quasi-homeotropic state and subsequent electroconvection at higher voltages. A temperature-induced change from normal and oblique convection rolls to longitudinal rolls reveals a transition from standard electroconvection to nonstandard electroconvection, which can be attributed to a sign inversion of the conductivity anisotropy. In summary, this system shows an unusually large variety of patterns and effects, which were observed and theoretically considered more recently in other systems of quite different types.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.6b05080DOI Listing

Publication Analysis

Top Keywords

pattern formation
8
liquid crystal
8
light scattering
8
conductivity anisotropy
8
formation nematic
4
nematic liquid
4
crystal mixture
4
mixture negative
4
anisotropy
4
negative anisotropy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!