Fibulin-5 localisation in human endometrial cancer shifts from epithelial to stromal with increasing tumour grade, and silencing promotes endometrial epithelial cancer cell proliferation.

Oncol Lett

Centre for Reproductive Health, The Hudson Institute of Medical Research, Melbourne, Victoria 3168, Australia; Department of Molecular and Translational Medicine, Monash University, Melbourne, Victoria 3800, Australia; Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria 3800, Australia.

Published: July 2016

Endometrial cancer is the most common invasive gynaecological malignancy. While endocrine, genetic and inflammatory factors are thought to contribute to its pathogenesis, its precise etiology and molecular regulators remain poorly understood. Fibulin-5 is an extracellular matrix (ECM) protein that inhibits cell growth and invasion in several cancer cell types and is downregulated in a number of types of human cancer. However, it is unknown whether fibulin-5 plays a role in endometrial tumourigenesis. In the current report, the expression and localisation of fibulin-5 in type I endometrioid human endometrial cancers of grades (G) 1-3 was investigated using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Fibulin-5 mRNA was found to be significantly reduced in whole tumour tissues from women across G1-3 compared with benign endometrium (P<0.0001). Consistently, fibulin-5 protein was also reduced in the tumour epithelial compartment across increasing tumour grades. By contrast, increased protein localisation to the tumour stroma was observed with increasing grade. Knockdown by small interfering RNA in Ishikawa endometrial epithelial cancer cells expressing fibulin-5 stimulated cell adhesion and proliferation . Fibulin-5 mRNA expression in Ishikawa cells was induced by transforming growth factor-β and fibulin-5 in turn activated extracellular signal-regulated kinases (ERK1/2), suggesting that it may act via the mitogen-activated protein kinase pathway. In summary, the present study identified fibulin-5 as a downregulated ECM gene in human endometrial cancer and observed a shift from epithelial to stromal protein localisation with increasing tumour grade in women. These data suggest that loss of fibulin-5 function may promote endometrial cancer progression by enhancing epithelial cell adhesion and proliferation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907274PMC
http://dx.doi.org/10.3892/ol.2016.4650DOI Listing

Publication Analysis

Top Keywords

human endometrial
8
endometrial cancer
8
cancer cell
8
fibulin-5
5
endometrial
5
cancer
5
fibulin-5 localisation
4
localisation human
4
cancer shifts
4
shifts epithelial
4

Similar Publications

Exploring the potential of advanced artificial intelligence technology in predicting microsatellite instability (MSI) and Ki-67 expression of endometrial cancer (EC) is highly significant. This study aimed to develop a novel hybrid radiomics approach integrating multiparametric magnetic resonance imaging (MRI), deep learning, and multichannel image analysis for predicting MSI and Ki-67 status. A retrospective study included 156 EC patients who were subsequently categorized into MSI and Ki-67 groups.

View Article and Find Full Text PDF

Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.

View Article and Find Full Text PDF

[Solid, endometrial-like and transitional growth patterns of ovarian high-grade serous carcinoma: a clinicopathological analysis of 25 cases].

Zhonghua Bing Li Xue Za Zhi

February 2025

Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China.

To investigate the clinicopathological characteristics of solid, endometrial-like and transitional (SET) cell growth subtype in high-grade serous ovarian carcinoma (HGSC). Clinical data of 25 cases of HGSC-SET were collected from January 2020 to March 2024 at the Affiliated Suzhou Hospital of Nanjing Medical University, and their histological features were analyzed. Immunohistochemical stains were used to analyze the expression of ER, PR, PAX8, WT-1, p16, p53 and Ki-67.

View Article and Find Full Text PDF

To investigate whether the immunohistochemical results of two markers PMS2 and MSH6 (2-MMR) could replace the four markers MLH1, PMS2, MSH2 and MSH6 (4-MMR) to detect mismatch repair deficient (dMMR) cancers. A retrospective analysis was conducted with summary of immunohistochemical data from 7 867 cases of gastric cancer, colorectal cancer, endometrial cancer, and other diseases in the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China, from March 2018 to March 2023. The consistency of 2-MMR and 4-MMR results was examined.

View Article and Find Full Text PDF

Human embryo implantation: The complex interplay between endometrial receptivity and the microbiome.

J Reprod Immunol

January 2025

Chengdu Fifth People's Hospital, (School of Medical and Life Sciences/Affiliated Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine), Chengdu, China. Electronic address:

The endometrial and vaginal microbiota have co-evolved with the reproductive tract and play a key role in both health and disease. However, the difference between endometrial and vaginal microbiota, as well as their association with reproductive outcomes in women undergoing frozen embryo transfer, remains unclear. 120 women who underwent in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) and whole embryo freezing were enrolled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!