Effects of melatonin on HIF-1α and VEGF expression and on the invasive properties of hepatocarcinoma cells.

Oncol Lett

Laboratory of Molecular Investigation of Cancer (LIMC), Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, São Paulo, SP 15090-000, Brazil; Postgraduate Program in Genetics, Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP/IBILCE, São José do Rio Preto, São Paulo, SP 15054-000, Brazil; Department of Molecular Biology, Faculty of Medicine of São José do Rio Preto, São José do Rio Preto São Paulo, SP 15090-000, Brazil.

Published: July 2016

Liver cancer is the sixth most commonly occurring cancer globally, and the main histological type is hepatocellular carcinoma. This type of neoplasia has a poor prognosis due to a high rate of recurrence and intrahepatic metastasis, which are closely are closely associated with the angiogenic process. Vascular endothelial growth factor (VEGF), which is under the control of hypoxia inducible factor-1α (HIF-1α), stimulates the proliferation of endothelial cells and increases cell permeability, promoting the growth, spread and metastasis of tumors. Melatonin, the main hormone secreted by the pineal gland, may have a significant role in tumor suppression and has demonstrated antiangiogenic and antimetastatic effects. The aim of the present study was to analyze the cell viability, migration and invasion, as well as the expression of proangiogenic proteins VEGF and HIF-1α, in HepG2 hepatocarcinoma cells, following treatment with melatonin. Cells were cultured and cell viability was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The expression of proangiogenic proteins VEGF and HIF-1α, under conditions of normoxia and hypoxia, was verified using immunocytochemistry and quantified by densitometry. The analysis of the processes of cell migration and invasion was performed in a Boyden chamber. The MTT assay revealed a reduction in cell viability (P=0.018) following treatment with 1 mM melatonin for 24 h. The expression of proangiogenic proteins VEGF and HIF-1α was reduced in cells treated with 1 mM melatonin for 24 h in normoxic (P<0.001) and hypoxic (P<0.001) conditions, compared with the control group and with induced hypoxia alone. The rate of cell migration and invasion was additionally reduced in cells treated with 1 mM melatonin for 48 h when compared with the control group (P=0.496). The results of the present study suggest that melatonin may have an antiproliferative, antiangiogenic and antimetastatic role in hepatocarcinoma cells and may present a novel therapeutic option for the treatment of liver cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907066PMC
http://dx.doi.org/10.3892/ol.2016.4605DOI Listing

Publication Analysis

Top Keywords

cell viability
12
expression proangiogenic
12
proangiogenic proteins
12
proteins vegf
12
vegf hif-1α
12
hepatocarcinoma cells
8
migration invasion
8
treatment melatonin
8
mtt assay
8
hif-1α
5

Similar Publications

Here we characterize seven Cx30.3 gene variants (R22H, S26Y, P61R, C86S, E99K, T130M and M190L) clinically associated with the rare skin disorder erythrokeratodermia variabilis et progressiva (EKVP) in tissue-relevant and differentiation-competent rat epidermal keratinocytes (REKs). We found that all variants, when expressed alone or together with wildtype (WT) Cx30.

View Article and Find Full Text PDF

Screening a library of temperature-sensitive mutants to identify secretion factors in .

J Bacteriol

January 2025

Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Chicago, Illinois, USA.

Protein secretion is an essential cell process in bacteria, required for cell envelope biogenesis, export of virulence factors, and acquisition of nutrients, among other important functions. In the Sec secretion pathway, signal peptide-bearing precursors are recognized by the SecA ATPase and pushed across the membrane through a translocon channel made of the proteins SecY, SecE, and SecG. The Sec pathway has been extensively studied in the model organism , but the Sec pathways of other bacteria such as the human pathogen differ in important ways from this model.

View Article and Find Full Text PDF

Next-generation cancer phenomics by deployment of multiple molecular endophenotypes coupled with high-throughput analyses of gene expression offer veritable opportunities for triangulation of discovery findings in non-small cell lung cancer (NSCLC) research. This study reports differentially expressed genes in NSCLC using publicly available datasets (GSE18842 and GSE229253), uncovering 130 common genes that may potentially represent crucial molecular signatures of NSCLC. Additionally, network analyses by GeneMANIA and STRING revealed significant coexpression and interaction patterns among these genes, with four notable hub genes-, , and -identified as pivotal in NSCLC progression.

View Article and Find Full Text PDF

Tamoxifen (TAM) is employed to treat premenopausal ER-positive breast cancer patients, but TAM resistance is the main reason affecting its efficacy. Thus, addressing TAM resistance is crucial for improving therapeutic outcomes. This study explored the potential role of Tinagl1, a secreted extracellular matrix protein, whose expression is compromised in TAM-resistant MCF-7 breast cancer cells (MCF-7R).

View Article and Find Full Text PDF

Purpose: Patients with advanced non-small cell lung cancer (NSCLC) have varying responses to immunotherapy, but there are no reliable, accepted biomarkers to accurately predict its therapeutic efficacy. The present study aimed to construct individualized models through automatic machine learning (autoML) to predict the efficacy of immunotherapy in patients with inoperable advanced NSCLC.

Methods: A total of 63 eligible participants were included and randomized into training and validation groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!