Small ubiquitin-related modifier protein (SUMO) is an evolutionarily conserved protein in a broad range of eukaryotic organisms. De-SUMOylation, the reverse reaction of SUMOylation, is regulated by a family of SUMO-specific proteases (SENPs). SENP1 is a member of the de-SUMOylation protease family involved in the de-SUMOylation of a variety of SUMOylated proteins. The present study demonstrates that small hairpin RNA (shRNA)-mediated downregulation of SENP1 inhibits cell proliferation and migration, and promotes apoptosis in human glioma cells. Firstly, LN-299 cells were transfected with a plasmid expressing SENP1 shRNA (pGenesil-1-SENP1). The messenger RNA and protein expression of SENP1 was detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. Cell proliferation was assessed using a methyl thiazolyl tetrazolium assay. Flow cytometry (FCM) was used to detect the apoptosis of LN-299 cells. The effect of the downregulation of SENP1 on cell migration was detected by a Transwell migration system. The present results showed that, compared with the control shRNA group, the expression of SENP1 was significantly reduced in the SENP1 shRNA group. The proliferation was markedly inhibited in the SENP1 shRNA group. FCM findings revealed that apoptosis increased significantly in the SENP1 shRNA group. In addition, it was found that downregulation of SENP1 evidently suppressed tumor cell migration. Downregulation of SENP1 expression inhibited the proliferation and migration and promoted apoptosis in LN-299 cells. These results indirectly demonstrate that SENP1 is likely to play a critical role in human glioma cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4907169PMC
http://dx.doi.org/10.3892/ol.2016.4558DOI Listing

Publication Analysis

Top Keywords

downregulation senp1
20
senp1 shrna
16
shrna group
16
cell proliferation
12
proliferation migration
12
human glioma
12
glioma cells
12
senp1
12
ln-299 cells
12
senp1 inhibits
8

Similar Publications

SENP1 prevents high fat diet-induced non-alcoholic fatty liver diseases by regulating mitochondrial dynamics.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Pharmacology, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, PR China; Provincial Key Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi, 330006, PR China. Electronic address:

Mitochondrial dynamics plays a crucial role in the occurrence and development of non-alcoholic fatty liver diseases (NAFLD). SENP1, a SUMO-specific protease, catalyzes protein de-SUMOylation and involves in various physiological and pathological processes. However, the exact role of SENP1 in NAFLD remains unclear.

View Article and Find Full Text PDF

Myocardial infarction (MI) triggers a poor ventricular remodeling response, but the underlying mechanisms remain unclear. Here, the authors show that sentrin-specific protease 1 (SENP1) is downregulated in post-MI mice and in patients with severe heart failure. By generating cardiomyocyte-specific SENP1 knockout and overexpression mice to assess cardiac function and ventricular remodeling responses under physiological and pathological conditions.

View Article and Find Full Text PDF

Low-dose radiation-induced SUMOylation of NICD1 negatively regulates osteogenic differentiation in BMSCs.

Ecotoxicol Environ Saf

September 2024

Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China. Electronic address:

Various biological effects of ionizing radiation, especially continuous exposure to low-dose radiation (LDR), have attracted considerable attention. Impaired bone structure caused by LDR has been reported, but little is known about the mechanism involved in the disruption of bone metabolism. In this study, given that LDR was found to (at a cumulative dose of 0.

View Article and Find Full Text PDF

This study aimed to investigate the effect of specific small ubiquitin-like modifier (SUMO) proteases 1 (SENP1)-mediated deSUMOylation on the malignant behavior of glioma stem cells (GSCs) under hypoxia conditions and evaluate the clinical value of prevention in glioma patients. Under hypoxic conditions, upregulated hypoxia-inducible factor 1α (HIF1α) expression in GSCs activates Wnt/β-catenin signaling pathways, which provide rich nutritional support for glioblastoma (GBM). SENP1-mediated deSUMOylation stabilizes the expression of HIF1α and β-catenin, leading to the occurrence of GSCs-initiated tumorigenesis.

View Article and Find Full Text PDF

Liver sinusoidal endothelial cells (LSECs) have an important role in hepatic ischemia‑reperfusion injury (I/R), but the specific molecular mechanism of action is unknown. LSEC proliferation is regulated and fenestration is maintained via the Sentrin/SUMO‑specific protease 1 (SENP1)/hypoxia‑inducible factor‑1α (HIF‑1α) signaling axis under hypoxic conditions. In the present study, a hypoxia‑reoxygenation (H‑R) injury model was established using mouse LSECs to explore the relationship between SENP1 and H‑R injury , and the specific underlying mechanism was identified, revealing new targets for the clinical attenuation of hepatic I/R injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!