It has been reported previously that the expression of glucose transporter member 3 (GLUT3) is increased in malignant glioma cells compared with normal glial cells. However, the regulating mechanism that causes this phenomenon remains unknown. The present study investigated the regulating role of transcription factor specific protein 1 (Sp1) in GLUT3 expression in a human glioma cell line. In the present study, Sp1 was identified to directly bind to the GLUT3 5'-untranslated region in human glioma U251 cells. Small interfering RNA- and the Sp1-inhibitor mithramycin A-mediated Sp1 knockdown experiments revealed that Sp1 depletion decreased glucose uptake and inhibited cell growth and invasion of U251 cells by downregulating GLUT3 expression. Therefore Sp1 is an important positive regulator for the expression of GLUT3 in human glioma cells, and may explain the overexpression of GLUT3 in U251 cells. These results suggest that Sp1 may have a role in glioma treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4906678PMC
http://dx.doi.org/10.3892/ol.2016.4599DOI Listing

Publication Analysis

Top Keywords

human glioma
16
glioma cells
12
glut3 expression
12
u251 cells
12
specific protein
8
glucose uptake
8
cells regulating
8
cells
7
glut3
7
glioma
6

Similar Publications

The overall goal of this work was to assess the ability of Natural Killer cells to kill cultures of patient-derived glioblastoma cells. Herein we report impressive levels of NK-92 mediated killing of various patient-derived glioblastoma cultures observed at ET (effector: target) ratios of 5:1 and 1:1. This enabled direct comparison of the degree of glioblastoma cell loss across a broader range of glioblastoma cultures.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) is the most common primary brain tumor in adults and has a median survival of less than 15 months. Advancements in the field of epigenetics have expanded our understanding of cancer biology and helped explain the molecular heterogeneity of these tumors. B-cell-specific Moloney murine leukemia virus insertion site-1 (Bmi-1) is a member of the highly conserved polycomb group (PcG) protein family that acts as a transcriptional repressor of multiple genes, including those that determine cell proliferation and differentiation.

View Article and Find Full Text PDF

Background And Purpose: Working memory, a primary cognitive domain, is often impaired in pediatric brain tumor survivors, affecting their attention and processing speed. This study investigated the long-term effects of treatments, including surgery, radiotherapy (RT), and chemotherapy (CT), on working memory tracts in children with posterior fossa tumors (PFTs) using resting-state functional MRI (rs-fMRI) and diffusion MRI tractography.

Methods: This study included 16 medulloblastoma (MB) survivors treated with postoperative RT and CT, 14 pilocytic astrocytoma (PA) survivors treated with surgery alone, and 16 healthy controls from the Imaging Memory after Pediatric Cancer in children, adolescents, and young adults study (NCT04324450).

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor with a poor prognosis and limited survival. Patients with GBM have a high demand for palliative care. In our present case, a 21-year-old female GBM patient received inpatient palliative care services including symptom management, mental and psychological support for the patient, psychosocial and clinical decision support for her family members, and pre- and post-death bereavement management for the family.

View Article and Find Full Text PDF

Background: This systematic review and meta-analysis evaluates peripheral and CNS BDNF levels in glioma patients.

Methods: Following PRISMA guidelines, we systematically searched databases for studies measuring BDNF in glioma patients and controls. After screening and data extraction, we conducted quality assessment, meta-analysis, and meta-regression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!