6-Shogaol can be extracted from ginger and has been shown to exert anti-inflammatory and antioxidant activities, which are potentially relevant to the treatment of central nervous system disorders. Oxidative stress and inflammation are closely associated with ischemic injury and can eventually result in neuronal death. The aim of this study was to evaluate if 6-shogaol exerts neuroprotective activity. To this end, we determined its effects on oxidative stress and inflammation in a mouse model of middle cerebral artery occlusion (MCAO)-induced brain damage. In this model, MCAO was induced in C57BL/6 mice (30-35g, 9 weeks) for 1h, followed by 24h reperfusion. Mice were treated orally with 6-shogaol (0.1ml, 5 or 20mg/kg) once daily for 7 consecutive days prior to MCAO. We found that 6-shogaol significantly reduced neurological deficit scores and the mean infarct area. Moreover, 6-shogaol improved the behavioral deficits in the MCAO group. In addition, 6-shogaol pretreatment dampened MCAO-mediated production of reactive oxygen species and inflammatory cytokines. Mechanistic studies revealed that 6-shogaol inhibits the cysteinyl leukotriene 1 receptor (CysLT1R) and mitogen-activated protein kinase (MAPK) signaling proteins, thus providing a potential pharmacological mechanism for our observations. These results suggest that 6-shogaol can ameliorate the outcomes of MCAO and could thus be used as a potential preventive of stroke.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2016.06.044 | DOI Listing |
Biol Trace Elem Res
January 2025
College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
Exposure to vanadium (V) occurs through the ingestion of contaminated water, polluted soil, V-containing foods and medications, and the toxicity and absorption during the small intestine phase after oral ingestion play crucial roles in the ultimate health hazards posed by V. In this study, the human colon adenocarcinoma (Caco-2) cells were selected as an intestinal absorption model to investigate the uptake and cytotoxicity of vanadyl sulfate (VOSO) and sodium orthovanadate (NaVO). Our results confirmed the cytotoxic effects of V(IV) and V(V) and revealed a greater toxicity of V(IV) than V(V) towards Caco-2 cells.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Cardiovascular Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 17 Yongwai Road, Nanchang, 330006, Jiangxi, China.
The study aimed to elucidate the underlying pharmacological mechanism of the traditional Chinese medicine Pue in ameliorating myocardial ischemia-reperfusion injury (MIRI), a critical clinical challenge exacerbated by reperfusion therapy. In vivo MIRI and in vitro anoxia/reoxygenation (A/R) models were constructed. The results demonstrated that Pue pretreatment effectively alleviated MIRI, as manifested by diminishing the levels of serum CK-MB and LDH, mitigating the extent of myocardial infarction and enhancing cardiac functionality.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Department of Life Sciences and Medicine (DLSM), University of Luxembourg, Belvaux, Luxembourg.
Loss-of-function mutations in PARK7, encoding for DJ-1, can lead to early onset Parkinson's disease (PD). In mice, Park7 deletion leads to dopaminergic deficits during aging, and increased sensitivity to oxidative stress. However, the severity of the reported phenotypes varies.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
Nuclear speckles are membraneless organelles that associate with active transcription sites and participate in post-transcriptional mRNA processing. During the cell cycle, nuclear speckles dissolve following phosphorylation of their protein components. Here, we identify the PP1 family as the phosphatases that counteract kinase-mediated dissolution.
View Article and Find Full Text PDFChin Med
January 2025
Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China.
Objective: Electroacupuncture has been shown to play a neuroprotective role following ischemic stroke, but the underlying mechanism remains poorly understood. Ferroptosis has been shown to play a key role in the injury process. In the present study, we wanted to explore whether electroacupuncture could inhibit ferroptosis by promoting nuclear factor erythroid-2-related factor 2 (Nrf2) nuclear translocation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!