In axons, an action potential (AP) is thought to be broadcast as an unwavering binary pulse over its arbor, driving neurotransmission uniformly at release sites. Yet by recording from axons of cerebellar stellate cell (SC) interneurons, we show that AP width varies between presynaptic bouton sites, even within the same axon branch. The varicose geometry of SC boutons alone does not impose differences in spike duration. Rather, axonal patching revealed heterogeneous peak conductance densities of currents mediated mainly by fast-activating Kv3-type potassium channels, with clustered hotspots at boutons and restricted expression at adjoining shafts. Blockade of Kv channels at individual boutons indicates that currents immediately local to a release site direct spike repolarization at that location. Thus, the clustered arrangement and variable expression density of Kv3 channels at boutons are key determinants underlying compartmentalized control of AP width in a near synapse-by-synapse manner, multiplying the signaling capacity of these structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4969170PMC
http://dx.doi.org/10.1016/j.neuron.2016.05.035DOI Listing

Publication Analysis

Top Keywords

action potential
8
synapse-level determination
4
determination action
4
potential duration
4
duration channel
4
channel clustering
4
clustering axons
4
axons axons
4
axons action
4
potential thought
4

Similar Publications

Photoresponsive drug delivery systems have great potential for improved cancer therapy. However, most of the currently available drug-delivery nanosystems are relatively large and require light excitation with low tissue penetration. Here, we designed a near infrared responsive drug delivery system by loading [Ru(terpyridine)(dipyridophenazine)(HO)] (Ru(tpy)DPPZ) in azobenzene-modified mesoporous silica coated NaGdF:Nd/Yb/Tm upconversion nanoparticles (azo-mSiO-UCNPs).

View Article and Find Full Text PDF

Multi Targeted Activity of Cocculus hirsutus through Modulation of DPP-IV and PTP-1B Leading to Enhancement of Glucose Uptake and Attenuation of Lipid Accumulation.

Appl Biochem Biotechnol

January 2025

Tissue Culture and Drug Discovery Laboratory, Department of Biotechnology, Anna University, Chennai, 600 025, India.

Multi-targeted therapies are gaining attention in the management of multifactorial diseases due to their poly pharmacology, enhanced potency and reduced toxicity. Metabolic disorders like Type 2 diabetes mellitus (T2DM) and obesity necessitate multi-targeted therapy to improve insulin sensitivity, regulate glucose homeostasis and support weight loss. Medicinal plants rich in bioactive compounds exhibit multi-targetted action with minimal side effects.

View Article and Find Full Text PDF

Despite advances in cancer immunotherapy, such as targeting the PD-1/PD-L1 axis, a substantial number of patients harbor tumors that are resistant or relapse. Selective engagement of T-cell co-stimulatory molecules with bispecific antibodies may offer novel therapeutic options by enhancing signal 1-driven activation occurring via T-cell receptor engagement. In this study, we report the development and preclinical characterization of NI-3201, a PD-L1×CD28 bispecific antibody generated on the κλ-body platform that was designed to promote T-cell activity and antitumor function through a dual mechanism of action.

View Article and Find Full Text PDF

AAV-based gene delivery of antimicrobial peptides to combat drug-resistant pathogens.

Appl Environ Microbiol

January 2025

Animal Sciences Research Center, Division of Animal Sciences, University of Missouri, Columbia, Missouri, USA.

Antimicrobial peptides (AMPs) have emerged as potential alternatives to conventional antibiotics due to their novelty and multiple mechanisms of action. Because they are peptides, AMPs are amenable to bioengineering and suitable for cloning and expression at large production scales. However, the efficient delivery of AMPs is an unaddressed issue, particularly due to their large size, possible toxicities, and the development of adverse immune responses.

View Article and Find Full Text PDF

Persistent microbial infections and idiopathic pulmonary fibrosis - an insight into pathogenesis.

Front Cell Infect Microbiol

December 2024

Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX, United States.

Interstitial lung disease (ILD) is characterized by chronic inflammation and scarring of the lungs, of which idiopathic pulmonary fibrosis (IPF) is the most devastating pathologic form. Idiopathic pulmonary fibrosis pathogenesis leads to loss of lung function and eventual death in 50% of patients, making it the leading cause of ILD-associated mortality worldwide. Persistent and subclinical microbial infections are implicated in the acute exacerbation of chronic lung diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!