Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hum Mutat
James Comprehensive Cancer Center and the Department of Obstetrics and Gynecology, Ohio State University, Columbus, OH.
Published: October 2016
Next-generation sequencing has revolutionized cancer genetics, but accurately detecting mutations in repetitive DNA sequences, especially mononucleotide runs, remains a challenge. This is a particular concern for tumors with defective mismatch repair (MMR) that accumulate strand-slippage mutations. We developed MonoSeq to improve indel mutation detection in mononucleotide runs, and used MonoSeq to investigate strand-slippage mutations in endometrial cancers, a tumor type that has frequent loss of MMR. We performed extensive Sanger sequencing to validate both clonal and subclonal MonoSeq mutation calls. Eighty-one regions containing mononucleotide runs were sequenced in 540 primary endometrial cancers (223 with defective MMR). Our analyses revealed that the overall mutation rate in MMR-deficient tumors was 20-30-fold higher than in MMR-normal tumors. MonoSeq analysis identified several previously unreported mutations, including a novel hotspot in an A7 run in the terminal exon of ARID5B.The ARID5B indel mutations were seen in both MMR-deficient and MMR-normal tumors, suggesting biologic selection. The analysis of tumor mRNAs revealed the presence of mutant transcripts that could result in translation of neopeptides. Improved detection of mononucleotide run strand-slippage mutations has clear implications for comprehensive mutation detection in tumors with defective MMR. Indel frameshift mutations and the resultant antigenic peptides could help guide immunotherapy strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021604 | PMC |
http://dx.doi.org/10.1002/humu.23036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.