Generation of a human iPSC line from a patient with Leigh syndrome.

Stem Cell Res

Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols", Facultad de Medicina (UAM-CSIC), Spain; Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER) Madrid, Spain; Instituto de Investigación Hospital 12 de Octubre ("i+12"), Madrid, Spain. Electronic address:

Published: January 2016

Human iPSC line LND554SV.3 was generated from heteroplasmic fibroblasts of a patient with Leigh syndrome carrying a mutation in the MT-ND5 gene (m.13513GNA; p.D393N). Reprogramming factors Oct3/4, Sox2, Klf4,and cMyc were delivered using a non-integrative methodology that involves the use of Sendai virus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2015.12.005DOI Listing

Publication Analysis

Top Keywords

human ipsc
8
patient leigh
8
leigh syndrome
8
generation human
4
ipsc patient
4
syndrome human
4
ipsc lnd554sv3
4
lnd554sv3 generated
4
generated heteroplasmic
4
heteroplasmic fibroblasts
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Aptah Bio Inc., San Carlos, CA, USA.

Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

NYU Grossman School of Medicine, New York, NY, USA; NYU, New York City, NY, USA.

Background: Astrocytes, a major glial cell in the central nervous system (CNS), can become reactive in response to inflammation or injury, and release toxic factors that kill specific subtypes of neurons. Over the past several decades, many groups report that reactive astrocytes are present in the brains of patients with Alzheimer's disease, as well as several other neurodegenerative diseases. In addition, reactive astrocyte sub-types most associated with these diseases are now reported to be present during CNS cancers of several types.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Retromer Therapeutics, New York, NY, USA.

Background: Convergent evidence indicates that deficits in the endosomal recycling pathway underlies pathogenesis of Alzheimer's disease (AD). SORL1 encodes the retromer-associated receptor SORLA that plays an essential role in recycling of AD-associated cargos such as the amyloid precursor protein and the glutamatergic AMPA receptor. Importantly, loss of function pathogenic SORL1 variants are associated with AD.

View Article and Find Full Text PDF

Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).

Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Vigil Neuroscience, Inc, Watertown, MA, USA.

Background: TREM2 is a lipid-sensing receptor expressed by microglial sub-populations within neuropathological microenvironments, whose downstream signaling promotes microglial survival, plasticity, and migration. Multiple loss-of-function variants strongly implicate TREM2 as a key regulator of Alzheimer's disease (AD) risk. Accordingly, TREM2 antibodies are currently in development to evaluate the therapeutic potential of TREM2 agonism in neurodegenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!