Isotopic Fingerprints of Iron-Cyanide Complexes in the Environment.

Environ Sci Technol

Aix-Marseille Université, Laboratoire Chimie Environnement, UMR 7376-CNRS, Marseille, France.

Published: July 2016

Tracing the origin of iron-cyanide complexes in the environment is important because these compounds are potentially toxic. We determined the stable isotopic compositions of cyanide-carbon (CCN) and cyanide-nitrogen (NCN) in 127 contaminated solids and 11 samples of contaminated groundwater from coal carbonization sites, blast furnace operations, and commercial cyanide applications. Coal-carbonization-related cyanides had unique high mean δ(13)CCN values of -10.5 ± 3.5‰ for the solids and -16.1 ± 1.2‰ for the groundwater samples, while the values for blast furnace sludge (-26.9 ± 1.5‰), commercial cyanides (-26.0 ± 3.0‰), and their corresponding groundwaters were significantly lower. Determination of δ(13)CCN is a promising tool for identifying the source of cyanide contamination. However, for coal carbonization sites, historical research into the manufacturing process is necessary because a nonconventional gas works site exhibited exceptionally low δ(13)CCN values of -22.7 ± 1.7‰. The δ(15)NCN values for samples related to coal carbonization and blast furnaces overlapped within a range of +0.1 to +10.3‰, but very high δ(15)NCN values seemed to be indicative for a cyanide source in the blast furnace. In contrast, commercial cyanides tend to have lower δ(15)NCN values of -5.6 to +1.9‰ in solids and -0.5 to +3.0‰ in the groundwater.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b01565DOI Listing

Publication Analysis

Top Keywords

coal carbonization
12
blast furnace
12
δ15ncn values
12
iron-cyanide complexes
8
complexes environment
8
carbonization sites
8
δ13ccn values
8
commercial cyanides
8
values
6
isotopic fingerprints
4

Similar Publications

High carbon sectors (agriculture, industry, construction, and transportation) contribute nearly 85% of carbon emissions, highlighting the urgent need for transitioning towards cleaner energy structures in these sectors. This study utilizes the undesirable SBM model to assess TFEE (total factor energy efficiency) across the total sector and high carbon sectors. It decomposes TFEE from an energy structural perspective into coal, oil, natural gas, and electric heat efficiencies.

View Article and Find Full Text PDF

Methodological study on coal-based microbial modification of mineral black clay to overcome plant growth challenges on open-pit mine dumps in cold regions.

MethodsX

June 2025

CUMT-UCASAL Joint Research Center for Biomining and Soil Ecological Restoration, State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, China University of Mining and Technology, Xuzhou, Jiangsu province, 221116, PR China.

A critical challenge in ecological restoration of open-pit mine dumps in cold regions with limited topsoil resources is how to rapidly mitigate the plant growth-inhibitory effects of mineral black clay, thereby converting it into arable soil. Leveraging the high degradation capacity of coal seam-associated microorganisms on fossil carbon materials, combined with soil conditioning techniques, this study developed a microbial-based approach for modifying black clay. Seed germination experiments informed both laboratory and field trial designs.

View Article and Find Full Text PDF

Selective coupling of C platform molecules to C olefins is a cornerstone for establishing a sustainable chemical industry based on nonpetroleum sources. Vinyl chloride (CHCl), one of the top commodity petrochemicals, is commercially produced from coal- or oil-derived C hydrocarbon (acetylene and ethylene) feedstocks with a high carbon footprint. Here, we report a C-based route for vinyl chloride synthesis via the selective oxidative coupling of methyl chloride.

View Article and Find Full Text PDF

Understanding the Effects of Edge Planes in Porous Carbon: Quantum Capacitance and Electrolyte Behavior in Supercapacitor.

Chemphyschem

January 2025

Chinese Academy of Sciences, Institute of Coal Chemistry, 27 South Taoyuan Road, Taiyuan, Shanxi, P.R.China, 030001, Taiyuan, CHINA.

Electric double layer capacitors (EDLC) require large specific surface area to provide high power density. The generation of pores increases the electrochemical capacitance with more graphitic edge planes exposed to the electrolyte. Conventional theory believes this increasing in capacitance is owed to the increased specific surface area, but our work uncovers another mechanism.

View Article and Find Full Text PDF

Porous carbon nanosheets integrated with graphene-wrapped CoO and CoNx as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries.

J Colloid Interface Sci

January 2025

CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China. Electronic address:

The development of advanced bifunctional oxygen electrocatalysts for the oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) is crucial for the practical application of zinc-air batteries (ZABs). Herein, porous carbon nanosheets integrated with abundant graphene-wrapped CoO and CoNx (CoO/CoNx-C) were successfully fabricated through a simple one-step pyrolysis. With convenient porous channel and large accessible surface, abundant CoO/CoNx species and graphene wrapping structure, CoO/CoNx-C exhibited a half-wave potential of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!