AI Article Synopsis

  • Transcriptomic methods are essential in functional genomic research, but interpreting their vast data has challenges regarding understanding their impact on organism performance and fitness.
  • Recent studies on marine species adaptation to polar cold highlight the need for better integration of transcriptomic data with physiological concepts for more meaningful conclusions.
  • The concept of oxygen and capacity limited thermal tolerance (OCLTT) shows promise for guiding the integration of transcriptomic data, but there is a noticeable gap in linking gene function to broader ecological and temporal contexts.

Article Abstract

Transcriptomic methods are now widely used in functional genomic research. The vast amount of information received from these studies comes along with the challenge of developing a precise picture of the functional consequences and the characteristic regulatory mechanisms. Here we assess recent studies in marine species and their adaptation to polar (and seasonal) cold and explore how they have been able to draw reliable conclusions from transcriptomic patterns on functional consequences in the organisms. Our analysis indicates that the interpretation of transcriptomic data suffers from insufficient understanding of the consequences for whole organism performance and fitness and comes with the risk of supporting only preliminary and superficial statements.We propose that the functional understanding of transcriptomic data may be improved by their tighter integration into overarching physiological concepts that support the more specific interpretation of the 'omics' data and, at the same time, can be developed further through embedding the transcriptomic phenomena observed. Such possibilities have not been fully exploited.In the context of thermal adaptation and limitation, we explore preliminary evidence that the concept of oxygen and capacity limited thermal tolerance (OCLTT) may provide sufficient complexity to guide the integration of such data and the development of associated functional hypotheses. At the same time, we identify a lack of methodological approaches linking genes and function to higher levels of integration, in terms of organism and ecosystem functioning, at temporal and geographical scales, to support more reliable conclusions and be predictive with respect to the effects of global changes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bfgp/elw024DOI Listing

Publication Analysis

Top Keywords

functional consequences
8
reliable conclusions
8
transcriptomic data
8
transcriptomic
6
functional
5
integrated studies
4
studies organismal
4
organismal plasticity
4
plasticity physiological
4
physiological transcriptomic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!