Age-related diseases such as obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease and cardiomyopathy are frequently associated with fibrosis. Work within the last decade has improved our understanding of the pathophysiological mechanisms contributing to fibrosis development. In particular, oxidative stress and the antioxidant system appear to be crucial modulators of processes such as transforming growth factor-β1 (TGF-β1) signalling, metabolic homeostasis and chronic low-grade inflammation, all of which play important roles in fibrosis development and persistence. In the current review, we discuss the connections between reactive oxygen species, antioxidant enzymes and TGF-β1 signalling, together with functional consequences, reflecting a concept of redox-fibrosis that can be targeted in future therapies. Graphical abstract ᅟ.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5010605 | PMC |
http://dx.doi.org/10.1007/s00441-016-2445-3 | DOI Listing |
J Nanobiotechnology
January 2025
Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
Background: Both oxidative stress and autoimmune responses play crucial roles in the development of vitiligo. Under oxidative stress, the apoptotic melanocytes expose self-antigens and release high mobility group box 1 (HMGB1), triggering autoimmune activation and recruiting CD8 T cells. This process further leads to the destruction of melanocytes, resulting in the lack of melanin granules.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of cariology and Endodontology, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing 100081, PR China.
Periodontitis is a chronic inflammatory condition mainly caused by the interaction between the host immune system and periodontal tissue pathogens, and may lead to consequences, such as alveolar bone defects and tooth loss. Incomplete bacterial removal, persistent inflammation and high reactive oxygen species (ROS) environment are the main challenges for periodontal tissue repair and alveolar bone regeneration. In this study, an injectable composite microgel (Gelatin methacryloyl-Phenylboronic acid/Hydroxyadamantane, GPH) loaded with antimicrobial peptide (AMP) and cerium dioxide (CeO) microspheres was developed to achieve a synergistic function of bacteriostasis, immunomodulation, and ROS removal.
View Article and Find Full Text PDFJ Immunol Methods
January 2025
Clinical Services Program, Leidos Biomedical Research, Inc.,Frederick National Laboratory for Cancer Research, Frederick, MD 21702, United States of America. Electronic address:
Chronic granulomatous disease (CGD) is a rare immunodeficiency characterized by recurrent bacterial and fungal infections that are attributed to reduced production of reactive oxygen species (ROS) by a multi-component enzyme complex known as the phagocyte NADPH oxidase or NOX2. Presented in this review are descriptions of several assays that assess the production of ROS as well as assays that characterize the expression of specific proteins of NOX2.
View Article and Find Full Text PDFAgeing is a major risk factor for neurodegenerative diseases like Alzheimer's disease (AD). Microglia, as the principal innate immune cells within the brain, exert homeostatic and active immunological defense functions throughout human lifespan. The age-related dysfunction of microglia is currently recognized as a pivotal trigger for brain diseases associated with aging.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China. Electronic address:
Ethnopharmacological Relevance: Zuo Gui Wan (ZGW) is a well-known traditional Chinese medicine decoction used for approximately 400 years to treat age-related degenerative conditions, including cognitive impairment in older adults, osteoporosis, and general aging. However, the mechanism of action for ZGW remains unclear.
Aims Of The Study: This study aims to investigate the efficacy of ZGW in improving cognitive function in Alzheimer's disease (AD) animal models and to explore the underlying mechanisms, presenting a novel perspective in the field.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!