The multimedia model SimpleTreat, evaluates the distribution and elimination of chemicals by municipal sewage treatment plants (STP). It is applied in the framework of REACH (Registration, Evaluation, Authorization and Restriction of Chemicals). This article describes an adaptation of this model for application to industrial sewage treatment plants (I-STP). The intended use of this re-parametrized model is focused on risk assessment during manufacture and subsequent uses of chemicals, also in the framework of REACH. The results of an inquiry on the operational characteristics of industrial sewage treatment installations were used to re-parameterize the model. It appeared that one property of industrial sewage, i.e. Biological Oxygen Demand (BOD) in combination with one parameter of the activated sludge process, the hydraulic retention time (HRT) is satisfactory to define treatment of industrial wastewater by means of the activated sludge process. The adapted model was compared to the original municipal version, SimpleTreat 4.0, by means of a sensitivity analysis. The consistency of the model output was assessed by computing the emission to water from an I-STP of a set of fictitious chemicals. This set of chemicals exhibit a range of physico-chemical and biodegradability properties occurring in industrial wastewater. Predicted removal rates of a chemical from raw sewage are higher in industrial than in municipal STPs. The latter have typically shorter hydraulic retention times with diminished opportunity for elimination of the chemical due to volatilization and biodegradation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.06.063DOI Listing

Publication Analysis

Top Keywords

industrial sewage
16
sewage treatment
16
treatment plants
8
framework reach
8
activated sludge
8
sludge process
8
hydraulic retention
8
industrial wastewater
8
industrial
7
sewage
6

Similar Publications

Heavy metal(loid)s and nutrients in sewage sludge in Portugal - Suitability for use in agricultural soils and assessment of potential risks.

Sci Total Environ

January 2025

LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal. Electronic address:

The presence of heavy metal(loid)s in sewage sludge is a cause of concern and an obstacle to its agricultural valorisation. This study analysed the elemental composition of sewage sludge from 42 Portuguese wastewater treatment plants (WWTPs) during summer and winter, investigating heavy metal(loid) contamination, nutrient content, and potential risks related to sludge application to agricultural soils. Levels of 8 heavy metal(loid)s were investigated, ranging from not detected (Hg) to 5120 mg kg dw (Zn), decreasing in the order Zn > Cu > Cr > Ni > Pb > As>Cd > Hg.

View Article and Find Full Text PDF

Proper waste management and sustainable energy production are crucial for human development. For this purpose, this study evaluates the impact of blending percentage on energy recovery potential and environmental benefits of co-combustion of wastewater sludge and Brazilian low-rank coal. The sludge and coal were characterised in terms of their potential as fuel and co-combustion tests were carried out in a pilot-scale bubbling fluidised bed focused on the influence of the percentage of sludge mixture on the behaviour of co-combustion with coal in terms of flue gas composition and fluidised bed temperature stability.

View Article and Find Full Text PDF

Antimicrobial resistance is a growing public health concern, increasingly recognized as a silent pandemic across the globe. Therefore, it is important to monitor all factors that could contribute to the emergence, maintenance and spread of antimicrobial resistance. Environmental antibiotic pollution is thought to be one of the contributing factors.

View Article and Find Full Text PDF

Bacteriophages RCF and 1-6bf can control the growth of avian pathogenic Escherichia coli.

Poult Sci

January 2025

Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan. Electronic address:

Escherichia coli (E. coli) is a widely distributed pathogenic bacterium that poses a substantial hazard to poultry, leading to the development of a severe systemic disease known as colibacillosis. Colibacillosis is involved in multimillion-dollar losses to the poultry industry each year worldwide.

View Article and Find Full Text PDF

Enhanced Dissipation of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in Soil by the Bioaugmentation with Newly Isolated Strain MC5.

Int J Mol Sci

December 2024

Department of Microbiology, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland.

The presented study investigated the possibility of using the MC5 strain, isolated from raw sewage by the enrichment culture method, in the bioremediation of soil contaminated with selected NSAIDs, i.e., ibuprofen (IBF), diclofenac (DCF), and naproxen (NPX), using the bioaugmentation technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!