Flexible Substrate-Based Devices for Point-of-Care Diagnostics.

Trends Biotechnol

Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, School of Medicine, Palo Alto, CA 94304, USA; Department of Electrical Engineering (by courtesy), Stanford University, Stanford, CA 94305, USA. Electronic address:

Published: November 2016

Point-of-care (POC) diagnostics play an important role in delivering healthcare, particularly for clinical management and disease surveillance in both developed and developing countries. Currently, the majority of POC diagnostics utilize paper substrates owing to affordability, disposability, and mass production capability. Recently, flexible polymer substrates have been investigated due to their enhanced physicochemical properties, potential to be integrated into wearable devices with wireless communications for personalized health monitoring, and ability to be customized for POC diagnostics. Here, we focus on the latest advances in developing flexible substrate-based diagnostic devices, including paper and polymers, and their clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5288010PMC
http://dx.doi.org/10.1016/j.tibtech.2016.05.009DOI Listing

Publication Analysis

Top Keywords

poc diagnostics
12
flexible substrate-based
8
substrate-based devices
4
devices point-of-care
4
diagnostics
4
point-of-care diagnostics
4
diagnostics point-of-care
4
point-of-care poc
4
diagnostics play
4
play role
4

Similar Publications

Advances and Challenges in the Diagnosis of Leishmaniasis.

Mol Diagn Ther

January 2025

Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.

Leishmaniasis remains a significant public health challenge, particularly in endemic regions with limited resources. Traditional diagnostic methods, including microscopy, culture, and serology, though widely utilized, often suffer from limitations such as variable  sensitivity, time delays, and the need for specialized infrastructure. Some of these limitations have been addressed with the emergence of molecular diagnostic techniques.

View Article and Find Full Text PDF

Development of highly sensitive lateral flow immunoassay using PdNPs for detection of Plasmodium species.

Clin Chim Acta

January 2025

ARKRAY Healthcare Pvt. Ltd., Plot No. 336, 338, 340, Rd Number 3, GIDC, Sachin, 394230 Surat, Gujarat, India.

A lateral flow immunoassay (LFIA) employing palladium nanoparticles (PdNPs) labelled with antibodies has been innovatively designed for the precise detection of Plasmodium falciparum pLDH and HRPII antigen. This study focuses on development of LFIA based on PdNPs detection system to substantially enhance the visual detectability (vLOD), achieving an impressive 12 parasites/microliter (p/µl) vLOD in comparison with conventional system represented 50 p/µl vLOD. The research introduces a novel amplification system that not only heightens the sensitivity of LFIA but also maintains intense coloration.

View Article and Find Full Text PDF

Point of Care (POC) diagnosis provides an effective approach for controlling and managing Neglected Tropical Diseases (NTDs). Electrochemical biosensors are well-suited for molecular diagnostics due to their high sensitivity, cost-effectiveness, and ease of integration into POC devices. Schistosomiasis is a prominent NTD highly prevalent in Africa, Asia, and Latin America, with significant socioeconomic implications such as discrimination, reduced work capacity, or mortality, perpetuating the cycle of poverty in affected regions worldwide.

View Article and Find Full Text PDF

Background: Guidelines specify steroids as therapy for acute exacerbation of chronic obstructive pulmonary disease (AECOPD). However, the duration of survival benefit associated with steroids and the optimal dosage of nebulized budesonide (NB) during hospitalization remain unclear.

Methods: We conducted a retrospective study of hospitalized AECOPD patients.

View Article and Find Full Text PDF

Background: The aim of this study is to develop, analyse and validate the factor structure of the Positive Organizational Culture Scale (POC-S) within the industrial sector in a Spanish automotive company.

Method: The scale was developed and validated through exploratory and confirmatory factor analyses, involving blue- and white-collar workers. The POC-S consists of six factors: Open Communication and Support (OC&S), Strategic Knowledge (SK), Trust and Collaboration (T&C), Learning Orientation (LO), Recognition (REC), and Resilience (RES).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!