Lung engineering is a promising technology, relying on re-seeding of either human or xenographic decellularized matrices with patient-derived pulmonary cells. Little is known about the species-specificity of decellularization in various models of lung regeneration, or if species dependent cell-matrix interactions exist within these systems. Therefore decellularized scaffolds were produced from rat, pig, primate and human lungs, and assessed by measuring residual DNA, mechanical properties, and key matrix proteins (collagen, elastin, glycosaminoglycans). To study intrinsic matrix biologic cues, human endothelial cells were seeded onto acellular slices and analyzed for markers of cell health and inflammation. Despite similar levels of collagen after decellularization, human and primate lungs were stiffer, contained more elastin, and retained fewer glycosaminoglycans than pig or rat lung scaffolds. Human endothelial cells seeded onto human and primate lung tissue demonstrated less expression of vascular cell adhesion molecule and activation of nuclear factor-κB compared to those seeded onto rodent or porcine tissue. Adhesion of endothelial cells was markedly enhanced on human and primate tissues. Our work suggests that species-dependent biologic cues intrinsic to lung extracellular matrix could have profound effects on attempts at lung regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4939101 | PMC |
http://dx.doi.org/10.1016/j.biomaterials.2016.06.025 | DOI Listing |
Drug Dev Res
February 2025
Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt.
New phthalazine-derived inhibitors for VEGFR-2 were synthesized for anticancer evaluations. Also, docking studies were performed to explore the suggested binding orientations of the novel derivatives inside the binding site of VEGFR-2. The achieved biological data were extremely interrelated to that of docking study.
View Article and Find Full Text PDFToxicol Rep
December 2024
Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, United States.
Unlabelled: Thermal spray, in general, is a process that involves forcing a melted substance, such as metal or ceramic in the form of wire or powder, onto the surface of a targeted object to enhance its desired surface properties. In this paper, the melted substance is metal wire generated by an electric arc and forcibly coated on a rotary iron substrate using compressed air. This thermal process is referred to as double-wire arc thermal spray.
View Article and Find Full Text PDFFront Cell Dev Biol
December 2024
Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan.
Most blood cells derive from hematopoietic stem cells (HSCs), originating from endothelial cells. The induction of HSCs from endothelial cells occurs during mid-gestation, and research has revealed multiple steps in this induction process. Hemogenic endothelial cells emerge within the endothelium, transition to hematopoietic cells (pre-HSCs), and subsequently mature into functional HSCs.
View Article and Find Full Text PDFPlast Reconstr Surg Glob Open
December 2024
From the Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School Hospital, Tokyo, Japan.
Background: Keloids are growing scars that arise from injury to the reticular dermis and subsequent chronic local inflammation. The latter may be promoted by vascular hyperpermeability, which permits the ingress of chronic inflammatory cells/factors. Cutaneous capillaries consist of endothelial cells that generate, and are anchored by, a vascular basement membrane (VBM).
View Article and Find Full Text PDFGenes Dis
March 2025
Department of Nephrology, China-Japan Friendship Hospital, Beijing 100029, China.
Diabetic nephropathy is a prevalent complication of diabetes and stands as the primary contributor to end-stage renal disease. The global prevalence of diabetic nephropathy is on the rise, however, due to its intricate pathogenesis, there is currently an absence of efficacious treatments to enhance renal prognosis in affected patients. The mammalian target of rapamycin (mTOR), a serine/threonine protease, assumes a pivotal role in cellular division, survival, apoptosis delay, and angiogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!