This study comprehensively evaluated the performance of a full-scale plant (4550m(3)d(-1)) using a UASB reactor followed by a ceramic MBR for the reclamation and reuse of mixed industrial wastewater containing many inorganics, chemical, oil and greases. This plant was demonstrated as the first full-scale system to reclaim the mixed industrial wastewater in the world. During 395days of operation, influent chemical oxygen demand (COD) fluctuated widely, but this system achieved COD removal rate of 91% and the ceramic MBR have operated flux of 21-25LMH stably. This means that this system adsorbed the feed water fluctuation and properly treated the water. Energy consumption of this plant was achieved 0.76kWhmm(-3) and this value is same range of domestic sewage MBR system. The combination of an UASB reactor and ceramic MBR is the most economical and feasible solution for water reclamation of mixed industrial wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2016.06.036 | DOI Listing |
Membranes (Basel)
June 2024
State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
The extensive application of ceramic membranes in wastewater treatment draws increasing attention due to their ultra-long service life. A cost-effective treatment for high-strength swine wastewater is an urgent and current need that is a worldwide challenge. A pilot-scale sequencing batch flat-sheet ceramic membrane bioreactor (ScMBR) coupled with a short-cut biological nitrogen removal (SBNR) process was developed to treat high-strength swine wastewater.
View Article and Find Full Text PDFMembranes (Basel)
June 2024
China-Sri Lanka Joint Research and Demonstration Center for Water Technology, Ministry of Water Supply, Meewathura, Kandy 20400, Sri Lanka.
This study explores the effectiveness of an integrated anaerobic membrane bioreactor (AnMBR) coupled with an anoxic/oxic membrane bioreactor (A/O MBR) for the treatment of natural rubber industry wastewater with high sulfate, ammonia, and complex organic contents. This study was conducted at the lab-scale over a duration of 225 days to thoroughly investigate the efficiency and sustainability of the proposed treatment method. With a hydraulic retention time of 6 days for the total system, COD reductions were over 98%, which reduced the influent from 22,158 ± 2859 mg/L to 118 ± 74 mg/L of the effluent.
View Article and Find Full Text PDFWater Sci Technol
May 2024
The Institution of Energy and Architecture, Xi'an Aeronautical Institute, Xi'an 710077, China.
Electroplating wastewater contains heavy metal ions and organic matter. These contaminants not only endanger the environment but also pose risks to human health. Despite the development of various treatment processes such as chemical precipitation MBR, electrocoagulation (EC) ceramic membrane (CM), coagulation ultrafiltration (UF) reverse osmosis (RO), and CM RO.
View Article and Find Full Text PDFWater Environ Res
May 2024
School of Civil Engineering and Architecture, University of Jinan, Jinan, China.
In recent years, ceramic membranes have been increasingly used in membrane bioreactors (MBRs). However, membrane fouling was still the core issue restricting the large-scale engineering application of ceramic MBRs. As a novel and alternative technology, ultrasonic could be used to control membrane fouling.
View Article and Find Full Text PDFJ Environ Manage
February 2024
Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboraroty (Guangzhou), China. Electronic address:
The daily discharge of rural sewage in China occupies 30 % of the national wastewater discharge, and developing an energy-efficient, easy to operate, and decentralized rural sewage treatment technology becomes an important task. In this work, a novel rural sewage treatment technology, Electrocoagulation enhanced Gravity-Driven Membrane Bioreactor (EC-GDMBR) was exploited for the rural sewage treatment under long-term operation (160 days). Two EC-GDMBRs with various module structures of ceramic membrane (horizontal module and side module) not only displayed the desirable effluent quality, but also sustained the stable flux (8-13 LMH).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!