High arsenic abundance of 50-700μg/L in the groundwater from the Chianan Plain in southwestern Taiwan is a well-known environmental hazard. The groundwater-associated sediments, however, have not been geochemically characterized, thus hindering a comprehensive understanding of arsenic cycling in this region. In this study, samples collected from a 250m sediment core at the centre of the Chianan Plain were analyzed for arsenic and TOC concentrations (N=158), constituent minerals (N=25), major element abundances (N=105), and sequential arsenic extraction (N=23). The arsenic data show a prevalence of >10mg/kg with higher concentrations of 20-50mg/kg concentrated at 60-80 and 195-210m. Arsenic was extracted mainly as an adsorbate on clay minerals, as a co-precipitate in amorphous iron oxyhydroxide, and as a structural component in clay minerals. Since the sediments consist mainly of quartz, chlorite, and illite, the correlations between arsenic concentration and abundances of K2O and MgO pinpoint illite and chlorite as the major arsenic hosts. The arsenic-total iron correlation reflects the role of chlorite along with the contribution from amorphous iron oxyhydroxide as indicated by arsenic extraction data. Organic matter is not the dominant arsenic host for low TOC content, low arsenic abundance extracted from it, and a relatively low R(2) of the arsenic-TOC correlation. The major constituent minerals in the sediments are the same as those of the upriver metapelites, establishing a sink-source relationship. Composition data from two deep groundwater samples near the sediment core show Eh values and As(V)/As(III) ratios of reducing environments and high arsenic, K, Mg, and Fe contents necessary for deriving arsenic from sediments by desorption from clay and dissolution of iron oxyhydroxide. Therefore, groundwater arsenic was mainly derived from groundwater-associated sediments with limited contributions from other sources, such as mud volcanoes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2016.06.122 | DOI Listing |
Environ Pollut
December 2024
Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21007 Huelva, Spain; Department of Earth Sciences, Faculty of Experimental Sciences, University of Huelva, Campus El Carmen s/n, E21007, Huelva, Spain.
Emissions of metals and metalloids as a result of industrial processes, entail a great risk to human health. A high time resolution study on arsenic levels in PM in the city of Huelva (SW Spain) was carried out between September 2021 and September 2022. Hourly data obtained with a near real-time technique based on X-ray fluorescence were inter-compared with other offline analytical instrumentation.
View Article and Find Full Text PDFJ Environ Manage
December 2024
College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Biodiversity and Organic Farming, Beijing, 100193, China; State Key Laboratory of Nutrient Use and Management, Beijing, 100193, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, 100193, China. Electronic address:
The high global production combined with low recycling rates of polystyrene (PS) and low-density polyethylene (LDPE) contributes to the abundance of these commonly used plastics in soil, including as microplastics (MPs). However, the combined effects of MPs and heavy metals, such as arsenic (As) on earthworms are poorly understood. Here, we show that neither PS nor LDPE altered the effects of As on the survival, growth, and reproduction of the earthworm Eisenia fetida.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Naturally aged microplastics (NAMPs) are commonly found in farmland soils contaminated with heavy metals (HMs), such as arsenic (As) and cadmium (Cd); yet their combined effects on soil-plant ecosystems remain poorly understood. In this study, we investigated the toxic effects of NAMPs and As-Cd on lettuce, considering the influence of earthworm activity, and examined changes in As-Cd bioavailability in the rhizosphere. Four experimental systems were established: soil-only, soil-lettuce, soil-earthworms, and soil-lettuce-earthworms systems, with four NAMPs concentrations (0, 0.
View Article and Find Full Text PDFWater Res
December 2024
Department of Sanitation and Environmental Engineering, School of Engineering, Federal University of Minas Gerais, Avenue Antônio Carlos, 6627, Campus Pampulha, Belo Horizonte, MG, Brazil. Electronic address:
Arsenic (As) enrichment in groundwater stems from natural and hydrogeochemical factors, leading to geological contamination. Groundwater and surface water are interconnected, allowing As migration and surface water contamination. The As contamination poses health risks through contaminated water consumption.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!