Increased use of graphene materials might lead to their release into the environment. However, only a few studies have investigated the impact of graphene-based materials on green plants. In the present study, effects of graphene on plant roots and shoots after 48h or 30days of hydroponic culture were evaluated to determine its phytotoxicity. Results showed that although exposure to graphene (250, 500, 1000 and 1500mgL(-1)) significantly improved root elongation, root hair production was impaired. These observations might be associated with graphene induced-oxidative stress (indicated by nitroblue tetrazolium (NBT) and Evans blue staining, malondialdehyde (MDA) estimation, and antioxidant enzyme activity assay). After 30days of graphene exposure, shoot biomass, chlorophyll content, PSII activity and levels of several nutrient elements (N, K, Ca, Mg, Fe, Zn and Cu) were reduced, indicating that graphene inhibited plant growth and photosynthesis, and caused an imbalance of nutrient homeostasis. Based on these findings, we conclude that graphene has growth-limiting effects on plants, including root hair reduction, oxidative burst, photosynthesis inhibition, and nutritional disorder.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2016.06.019DOI Listing

Publication Analysis

Top Keywords

graphene
8
effects graphene
8
root hair
8
toxic effects
4
graphene growth
4
growth nutritional
4
nutritional levels
4
levels wheat
4
wheat triticum
4
triticum aestivum
4

Similar Publications

Photothermal therapy, in which a laser is an effective tool, is a promising method for cancer treatment. Laser parameters, including power, irradiation time, type of laser radiation (continuous or chopped), and the concentration of the photothermal agent, can affect the efficiency of this method. Therefore, this study investigated and compared the effects of different laser parameters on the efficiency of photothermal treatment for cervical cancer, which is the fourth most prevalent cancer in women.

View Article and Find Full Text PDF

The development of high-brightness electron sources is critical to state-of-the-art electron accelerator applications like X-ray free electron laser (XFEL) and ultra-fast electron microscopy. Cesium telluride is chosen as the electron source material for multiple cutting-edge XFEL facilities worldwide. This manuscript presents the first demonstration of the growth of highly crystalized and epitaxial cesium telluride thin films on 4H-SiC and graphene/4H-SiC substrates with ultrasmooth film surfaces.

View Article and Find Full Text PDF

Three composites based on Poly (meta-aminophenol) (PmAP), (3-aminopropyl) triethoxysilane (APTES) and graphene oxide (GO) were synthesized with initial GO dispersion of 3.3, 6.6, and 9.

View Article and Find Full Text PDF

This paper presents an in-depth analytical investigation into the time-dependent flow of a Casson hybrid nanofluid over a radially stretching sheet. The study introduces the effects of magnetic fields and thermal radiation, along with velocity and thermal slip, to model real-world systems for enhancing heat transfer in critical industrial applications. The hybrid nanofluid consists of three nanoparticles-Copper and Graphene Oxide-suspended in Kerosene Oil, selected for their stable and superior thermal properties.

View Article and Find Full Text PDF

Nanopesticides have been recently introduced as novel pesticides to overcome the drawbacks of using traditional synthetic pesticides. The present study evaluated the acaricidal activity of Copper/Graphene oxide core-shell nanoparticles against two tick species, Rhipicephalus rutilus and Rhipicephalus turanicus. The Copper/Graphene oxide core-shell nanoparticles were synthetized through the solution plasma (SP) method under different conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!