A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A support vector machine-based method to identify mild cognitive impairment with multi-level characteristics of magnetic resonance imaging. | LitMetric

Mild cognitive impairment (MCI) represents a transitional state between normal aging and Alzheimer's disease (AD). Non-invasive diagnostic methods are desirable to identify MCI for early therapeutic interventions. In this study, we proposed a support vector machine (SVM)-based method to discriminate between MCI patients and normal controls (NCs) using multi-level characteristics of magnetic resonance imaging (MRI). This method adopted a radial basis function (RBF) as the kernel function, and a grid search method to optimize the two parameters of SVM. The calculated characteristics, i.e., the Hurst exponent (HE), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo) and gray matter density (GMD), were adopted as the classification features. A leave-one-out cross-validation (LOOCV) was used to evaluate the classification performance of the method. Applying the proposed method to the experimental data from 29 MCI patients and 33 healthy subjects, we achieved a classification accuracy of up to 96.77%, with a sensitivity of 93.10% and a specificity of 100%, and the area under the curve (AUC) yielded up to 0.97. Furthermore, the most discriminative features for classification were found to predominantly involve default-mode regions, such as hippocampus (HIP), parahippocampal gyrus (PHG), posterior cingulate gyrus (PCG) and middle frontal gyrus (MFG), and subcortical regions such as lentiform nucleus (LN) and amygdala (AMYG). Therefore, our method is promising in distinguishing MCI patients from NCs and may be useful for the diagnosis of MCI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2016.06.025DOI Listing

Publication Analysis

Top Keywords

mci patients
12
support vector
8
mild cognitive
8
cognitive impairment
8
multi-level characteristics
8
characteristics magnetic
8
magnetic resonance
8
resonance imaging
8
method
7
mci
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!