Transcriptomic analyses of genes and tissues in inherited sensory neuropathies.

Exp Neurol

Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, USA. Electronic address:

Published: September 2016

Inherited sensory neuropathies are caused by mutations in genes affecting either primary afferent neurons, or the Schwann cells that myelinate them. Using RNA-Seq, we analyzed the transcriptome of human and rat DRG and peripheral nerve, which contain sensory neurons and Schwann cells, respectively. We subdivide inherited sensory neuropathies based on expression of the mutated gene in these tissues, as well as in mouse TRPV1 lineage DRG nociceptive neurons, and across 32 human tissues from the Human Protein Atlas. We propose that this comprehensive approach to neuropathy gene expression leads to better understanding of the involved cell types in patients with these disorders. We also characterize the genetic "fingerprint" of both tissues, and present the highly tissue-specific genes in DRG and sciatic nerve that may aid in the development of gene panels to improve diagnostics for genetic neuropathies, and may represent specific drug targets for diseases of these tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6086486PMC
http://dx.doi.org/10.1016/j.expneurol.2016.06.023DOI Listing

Publication Analysis

Top Keywords

inherited sensory
12
sensory neuropathies
12
neurons schwann
8
schwann cells
8
tissues
5
transcriptomic analyses
4
analyses genes
4
genes tissues
4
tissues inherited
4
sensory
4

Similar Publications

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy CADASIL) is a rare inherited disorder in which thickening of the walls of small and medium-sized blood vessels blocks blood flow to the brain. Diagnosis of CADASIL is based on clinical presentation, neuroimaging findings, and genetic predisposition. This disease is uncommon in children; typically, symptoms manifest in individuals between the ages of 20 and 40, though some may exhibit symptoms later in life.

View Article and Find Full Text PDF

Caenorhabditis Elegans as a Model for Environmental Epigenetics.

Curr Environ Health Rep

January 2025

Institute for Society and Genetics, University of California, Boyer Hall, Room 332, 611 Charles E Young Dr E., UCLA, Los Angeles, CA, 90095, USA.

Purpose Of Review: The burgeoning field of environmental epigenetics has revealed the malleability of the epigenome and uncovered numerous instances of its sensitivity to environmental influences; however, pinpointing specific mechanisms that tie together environmental triggers, epigenetic pathways, and organismal responses has proven difficult. This article describes how Caenorhabditis elegans can fill this gap, serving as a useful model for the discovery of molecular epigenetic mechanisms that are conserved in humans.

Recent Findings: Recent results show that environmental stressors such as methylmercury, arsenite, starvation, heat, bacterial infection, and mitochondrial inhibitors can all have profound effects on the epigenome, with some insults showing epigenetic and organismal effects for multiple generations.

View Article and Find Full Text PDF

Phosphodiesterase 4D inhibition improves the functional and molecular outcome in a mouse and human model of Charcot Marie Tooth disease 1 A.

Biomed Pharmacother

January 2025

Laboratory for Functional Imaging & Research on Stem Cells, BIOMED, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium. Electronic address:

Charcot-Marie-Tooth disease type 1A (CMT1A) is an inherited peripheral neuropathy caused by a duplication of the peripheral myelin protein 22 (PMP22) gene. It is primarily marked by Schwann cell dedifferentiation and demyelination, leading to motor and sensory deficits. Cyclic adenosine monophosphate (cAMP) is crucial for Schwann cell differentiation and maturation.

View Article and Find Full Text PDF

Unraveling the genetic spectrum of inherited deaf-blindness in Portugal.

Orphanet J Rare Dis

January 2025

Ophthalmology Department, Centro Hospitalar e Universitário de Coimbra (CHUC), Hospitais da Universidade de Coimbra (HUC), ULS Coimbra, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal.

Background: Syndromic genetic disorders affecting vision can also cause hearing loss, and Usher syndrome is by far the most common etiology. However, many other conditions can present dual sensory impairment. Accurate diagnosis is essential for providing patients with genetic counseling, prognostic information, and appropriate resources.

View Article and Find Full Text PDF

Immaturities exist at multiple levels of the developing human visual pathway, starting with immaturities in photon efficiency and spatial sampling in the retina and on through immaturities in early and later stages of cortical processing. Here we use Steady-State Visual Evoked Potentials (SSVEPs) and controlled visual stimuli to determine the degree to which sensitivity to horizontal retinal disparity is limited by the visibility of the monocular half-images, the ability to encode absolute disparity or the ability to encode relative disparity. Responses were recorded from male and female human participants at average ages of 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!