Rose bengal photosensitized the formation of frank single-strand breaks (SSBs) in double-stranded, supercoiled pBR322 DNA as measured by neutral agarose electrophoresis. The yield of SSBs followed first order kinetics with respect to light fluence and dye concentration. The efficiency of cleavage was more than 20 times greater in an argon atmosphere than in an oxygen atmosphere. The quantum yield in an air atmosphere was 1.7 (+/- 0.3) X 10(-8). Sodium azide quenched the cleavage more efficiently in an oxygen atmosphere than when the oxygen concentration was reduced. Isopropanol and mannitol were poor quenchers; ribose-5-phosphate and guanosine-5'-monophosphate did not quench the cleavage. Substituting D2O for H2O increased the yield of SSBs in both oxygen and oxygen-depleted atmospheres. The results are consistent with initiation of cleavage by reaction of the triplet state of rose bengal (or a radical derived from it) with DNA. In the presence of oxygen, an additional mechanism is introduced.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1751-1097.1989.tb04109.x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!