Background: Immunobiotic Lactobacillus jensenii TL2937 modulates porcine mononuclear phagocytes from Peyer's patches (PPMPs) and induces a differential production of pro- and anti-inflammatory cytokines in response to Toll-like receptor (TLR)-4 activation. In view of the important role played by phagocytosis in the activation of antigen presenting cells (APCs), the aim of the present work was to examine the interaction of TL2937 with porcine PPMPs focusing on phagocytosis. In addition, this study aimed to investigate whether the effects of L. jensenii TL2937 in porcine blood monocyte-derived dendritic cells (MoDCs) are similar to those found in PPMPs considering that MoDCs do not recapitulate all functions of mucosal APCs.
Results: Studies showed a high ability of porcine CD172a(+) PPMPs to phagocytose L. jensenii TL2937. Interestingly, our results also revealed a reduced capacity of the non-immunomodulatory L. plantarum TL2766 to be phagocytosed by those immune cells. Phagocytosis of L. jensenii TL2937 by porcine PPMPs was partially dependent on TLR2. In addition, we demonstrated that TL2937 strain was able to improve the expression of IL-1β, IL-12 and IL-10 in immature MoDCs resembling the effect of this immunobiotic bacterium on PPMPs. Moreover, similarly to PPMPs those immunomodulatory effects were related to the higher capacity of TL2937 to be phagocytosed by immature MoDCs.
Conclusions: Microbial recognition in APCs could be effectively mediated through ligand-receptor interactions that then mediate phagocytosis and signaling. For the immunobiotic strain TL2937, TLR2 has a partial role for its interaction with porcine APCs and it is necessary to investigate the role of other receptors. A challenge for future research will be advance in the full understanding of the molecular interactions of immunobiotic L. jensenii TL2937 with porcine APCs that will be crucial for the successful development of functional feeds for the porcine host. This study is a step in that direction.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4921007 | PMC |
http://dx.doi.org/10.1186/s12865-016-0160-1 | DOI Listing |
Methods Mol Biol
August 2024
Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
Microorganisms with the ability to modulate the immune system (immunobiotics) have shown to interact with different pattern recognition receptors (PRRs) expressed in nonimmune and immune cells and exert beneficial effects on host's health maintenance and promotion. Suitable assay systems are necessary for an efficient and rapid screening of potential immunobiotic strains. More than a decade of research has allowed us to develop efficient in vitro models based on porcine receptors and cells (porcine immunoassay systems) to study the immunomodulatory effects of lactic acid bacteria (LAB).
View Article and Find Full Text PDFFront Immunol
May 2021
Food and Feed Immunology Group, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
Immunobiotics have emerged as a promising intervention to alleviate intestinal damage in inflammatory bowel disease (IBD). However, the beneficial properties of immunobiotics are strain dependent and, therefore, each strain has to be evaluated in order to demonstrate its potential application in IBD. Our previous and studies demonstrated that TL2937 attenuates gut acute inflammatory response triggered by Toll-like receptor 4 activation.
View Article and Find Full Text PDFMethods Mol Biol
June 2019
Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.
Microorganisms with the ability to modulate the immune system (immunobiotics) have shown to interact with different pattern recognition receptors (PRRs) expressed in nonimmune and immune cells and exert beneficial effects on host's health maintenance and promotion. Suitable assay systems are necessary for an efficient and rapid screening of potential immunobiotic strains. More than a decade of research have allowed us to develop efficient in vitro models based on porcine receptors and cells (porcine immunoassay systems) to study the immunomodulatory effects of lactic acid bacteria (LAB).
View Article and Find Full Text PDFGenome Announc
March 2017
Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
The genome of the immunomodulatory strain TL2937 is described here. The draft genome has a total length of 1,678,416 bp, a G+C content of 34.3%, and 1,470 predicted protein-coding sequences.
View Article and Find Full Text PDFBenef Microbes
November 2016
1 Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, 1-1 Amamiya-machi, Tsutsumidori, Aoba-ku, Sendai, Miyagi, 981-8555, Japan.
In order to evaluate probiotic strains applicable for the beneficial immunomodulation of the porcine gut (immunobiotics), we previously developed a porcine intestinal epitheliocyte cell line (PIE cells). Here, transcriptomic studies using PIE cells were performed considering that this information would be valuable for understanding the mechanisms involved in the protective activity of the immunobiotic strain Lactobacillus jensenii TL2937 against intestinal inflammatory damage in pigs. In addition, those studies would provide criteria for selecting biomarkers for the screening of new immunobiotic strains.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!