Cyclodextrin-Mediated Hierarchical Self-Assembly and Its Potential in Drug Delivery Applications.

J Pharm Sci

University Paris Est, ICMPE (UMR 7182), CNRS, UPEC, Thiais 94320, France. Electronic address:

Published: September 2016

Hierarchical self-assembly exploits various non-covalent interactions to manufacture sophisticated organized systems at multiple length scales with interesting properties for pharmaceutical industry such as possibility of spatially controlled drug loading and multiresponsiveness to external stimuli. Cyclodextrin (CD)-mediated host-guest interactions proved to be an efficient tool to construct hierarchical architectures primarily due to the high specificity and reversibility of the inclusion complexation of CDs with a number of hydrophobic guest molecules, their excellent bioavailability, and easiness of chemical modification. In this review, we will outline the recent progress in the development of CD-based hierarchical architectures such as nanoscale drug and gene delivery carriers and physically cross-linked supramolecular hydrogels designed for a sustained release of actives.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xphs.2016.05.010DOI Listing

Publication Analysis

Top Keywords

hierarchical self-assembly
8
hierarchical architectures
8
cyclodextrin-mediated hierarchical
4
self-assembly potential
4
potential drug
4
drug delivery
4
delivery applications
4
applications hierarchical
4
self-assembly exploits
4
exploits non-covalent
4

Similar Publications

Water-regulated viscosity-plasticity phase transitions in a peptide self-assembled muscle-like hydrogel.

Nat Commun

January 2025

Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province, China.

The self-assembly of small molecules through non-covalent interactions is an emerging and promising strategy for building dynamic, stable, and large-scale structures. One remaining challenge is making the non-covalent interactions occur in the ideal positions to generate strength comparable to that of covalent bonds. This work shows that small molecule YAWF can self-assemble into a liquid-crystal hydrogel (LCH), the mechanical properties of which could be controlled by water.

View Article and Find Full Text PDF

Intra-Mesopore Immunoassay Based on Core-Shell Structured Magnetic Hierarchically Porous ZIFs.

ACS Sens

January 2025

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

It is crucial yet challenging to sensitively quantify low-abundance biomarkers in blood for early screening and diagnosis of various diseases. Herein, an analytical model of intra-mesopore immunoassay (IMIA) was proposed, which was competent to examine various biomarkers at the femtomolar level. The success is rooted in the design of an innovative superparamagnetic core-shell structure with FeO nanoparticles (NPs) at the core and hierarchically porous zeolitic imidazolate frameworks as a shell (FeO@HPZIF-8), achieved through a soft-template directed self-assembly coupled with confinement growth mechanism.

View Article and Find Full Text PDF

Precisely crafted hierarchical architectures found in naturally derived biomaterials underpin the exceptional performance and functionality showcased by the host organism. In particular, layered helical assemblies composed of cellulose, chitin, or collagen serve as the foundation for some of the most mechanically robust and visually striking natural materials. By utilizing structured materials in additive manufacturing techniques such as extrusion-based 3D printing, the intrinsic deformation process can be used to implement bottom-up design of printed constructs, offering the potential to create intricate macroscale geometries with embedded nanoscale functionality.

View Article and Find Full Text PDF

Protein-based biomaterials are in high demand due to their high biocompatibility, non-toxicity, and biodegradability. In this study, we explore the bacterial secreted protein A (EspA), which self-assembles into long extracellular filaments, as a potential building block for new protein-based biomaterials. We investigated the morphological and mechanical properties of EspA filaments and how protein engineering can modify them.

View Article and Find Full Text PDF

Block copolymers (BCPs) can form nanoparticles having different morphologies that can be used as photonic nanocrystals and are a platform for drug delivery, sensors, and catalysis. In particular, BCP nanoparticles having disk-like shape have been recently discovered. Such nanodisks can be used as the next-generation antitumor drug delivery carriers; however, the applicability of the existing nanodisks is limited due to their poor or unknown ability to respond to external stimuli.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!