A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Breath gas monitoring during a glucose challenge by a combined PTR-QMS/GC×GC-TOFMS approach for the verification of potential volatile biomarkers. | LitMetric

Breath gas monitoring during a glucose challenge by a combined PTR-QMS/GC×GC-TOFMS approach for the verification of potential volatile biomarkers.

J Breath Res

Joint Mass Spectrometry Centre, Comprehensive Molecular Analytics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany. Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, University of Rostock, Dr. Lorenz Weg 1, Rostock 18059, Germany.

Published: June 2016

Breath gas profiles, which reflect metabolic disorders like diabetes, are the subject of scientific focus. Nevertheless, profiling is still a challenging task that requires complex and standardized methods. This study was carried out to verify breath gas patterns that were obtained in previous proton-transfer reaction-quadrupole mass spectrometry (PTR-QMS) studies and that can be linked to glucose metabolism. An experimental setup using simultaneous PTR-QMS and complementary highly time-resolved needle trap micro extraction (NTME) combined with comprehensive 2D gas chromatography-time-of-flight mass spectrometry (GC×GC-TOFMS) was established for the analysis of highly polar volatile organic compounds (VOCs). The method was applied to the breath gas analysis of three volunteers during a glucose challenge, whereby subjects ingested a glucose solution orally. Challenge responsive PTR-QMS target VOCs could be linked to small n-carbonic (C2-C4) alcohols and short chain fatty acids (SCFA). Specific isomers could be identified by simultaneously applied NTME-GC×GC-TOFMS and further verified by their characteristic time profiles and concentrations. The identified VOCs potentially originate from bacteria that are found in the oral cavity and gastrointestinal tract. In this study breath gas monitoring enabled the identification of potential VOC metabolites that can be linked to glucose metabolism.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1752-7155/10/3/036003DOI Listing

Publication Analysis

Top Keywords

breath gas
20
gas monitoring
8
glucose challenge
8
mass spectrometry
8
linked glucose
8
glucose metabolism
8
breath
5
glucose
5
gas
5
monitoring glucose
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!