A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced Surface Interaction of Water Confined in Hierarchical Porous Polymers Induced by Hydrogen Bonding. | LitMetric

Hierarchical porous polymer systems are increasingly applied to catalysis, bioengineering, or separation technology because of the versatility provided by the connection of mesopores with percolating macroporous structures. Nuclear magnetic resonance (NMR) is a suitable technique for the study of such systems as it can detect signals stemming from the confined liquid and translate this information into pore size, molecular mobility, and liquid-surface interactions. We focus on the properties of water confined in macroporous polymers of ethylene glycol dimethacrylate and 2-hydroxyethyl methacrylate [poly(EGDMA-co-HEMA)] with different amounts of cross-linkers, in which a substantial variation of hydroxyl groups is achieved. As soft polymer scaffolds may swell upon saturation with determined liquids, the use of NMR is particularly important as it measures the system in its operational state. This study combines different NMR techniques to obtain information on surface interactions of water with hydrophilic polymer chains. A transition from a surface-induced relaxation in which relaxivity depends on the pore size to a regime where the organic pore surface strongly restricts water diffusion is observed. Surface affinities are defined through the molecular residence times near the network surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.6b00824DOI Listing

Publication Analysis

Top Keywords

water confined
8
hierarchical porous
8
pore size
8
enhanced surface
4
surface interaction
4
water
4
interaction water
4
confined hierarchical
4
porous polymers
4
polymers induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!