A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Atmospheric oxidation of hexachlorobenzene: New global source of pentachlorophenol. | LitMetric

Atmospheric oxidation of hexachlorobenzene: New global source of pentachlorophenol.

Chemosphere

Rudjer Boskovic Institute, Division of Physical Chemistry, POB 180, HR-10002 Zagreb, Croatia. Electronic address:

Published: September 2016

Hexachlorobenzene is highly persistent, bioaccumulative, toxic and globally distributed, a model persistent organic pollutant. The major atmospheric removal process for hexachlorobenzene is its oxidation by hydroxyl radicals. Unfortunately, there is no information on the reaction mechanism of this important atmospheric process and the respective degradation rates were measured in a narrow temperature range not of environmental relevance. Thus, the geometries and energies of all stationary points significant for the atmospheric oxidation of hexachlorobenzene are optimized using MP2/6-311G(d,p) method. Furthermore, the single point energies were calculated with G3 method on the optimized minima and transition-states. It was demonstrated for the first time that the addition of hydroxyl radicals to hexachlorobenzene proceeds indirectly, via a prereaction complex. In the prereaction complex the hydroxyl radical is almost perpendicular to the aromatic ring while oxygen is pointing to its center. In contrast, in the transition state it is nearly parallel with the aromatic ring. The reliable rate constants are calculated for the first time for the atmospheric oxidation of hexachlorobenzene for all environmentally relevant temperatures. It was also demonstrated for the first time that pentachlorophenol is the major stable product in the addition of hydroxyl radicals to hexachlorobenzene and that atmosphere seems to be a new global secondary source of pentachlorophenol.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.06.026DOI Listing

Publication Analysis

Top Keywords

atmospheric oxidation
12
oxidation hexachlorobenzene
12
hydroxyl radicals
12
source pentachlorophenol
8
demonstrated time
8
addition hydroxyl
8
radicals hexachlorobenzene
8
prereaction complex
8
aromatic ring
8
hexachlorobenzene
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!