Electrical property characterization of stem cells could be utilized as a potential label-free biophysical approach to evaluate the differentiation process. However, there has been a lack of technology or tools that can quantify the intrinsic cellular electrical markers (e.g., specific membrane capacitance (Cspecific membrane) and cytoplasm conductivity (σcytoplasm)) for a large amount of stem cells or differentiated cells. In this paper, a microfluidic platform enabling the high-throughput quantification of Cspecific membrane and σcytoplasm from hundreds of single neural stem cells undergoing differentiation was developed to explore the feasibility to characterize the neural stem cell differentiation process without biochemical staining. Experimental quantification using biochemical markers (e.g., Nestin, Tubulin and GFAP) of neural stem cells confirmed the initiation of the differentiation process featured with gradual loss in cellular stemness and increased cell markers for neurons and glial cells. The recorded electrical properties of neural stem cells undergoing differentiation showed distinctive and unique patterns: 1) in the suspension culture before inducing differentiation, a large distribution and difference in σcytoplasm among individual neural stem cells was noticed, which indicated heterogeneity that may result from the nature of suspension culture of neurospheres; and 2) during the differentiation in adhering monolayer culture, significant changes and a large difference in Cspecific membrane were located indicating different expressions of membrane proteins during the differentiation process, and a small distribution difference in σcytoplasm was less significant that indicated the relatively consistent properties of cytoplasm during the culture. In summary, significant differences in Cspecific membrane and σcytoplasm were observed during the neural stem cell differentiation process, which may potentially be used as label-free biophysical markers to monitor this process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4920408 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0158044 | PLOS |
Cell Rep
January 2025
Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:
Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Orthopedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325000, P. R. China.
Facilitating neuronal differentiation of stem cells and microenvironment remodeling are the key challenges in cell-based transplantation strategies for central nervous system regeneration. Herein, the study harnesses the intrinsic pro-neural differentiation potential of nerve-derived extracellular matrix (NDEM) and its specific affinity for cytokines to develop an NDEM-gelatin methacryloyl(gelMA)-based bifunctional hydrogel delivery system for stem cells and cytokines. This system promotes the neural differentiation of bone marrow stromal cells (BMSCs) and optimizes the therapeutic index of Interleukin-4 (IL-4) for spinal cord injury (SCI) treatment.
View Article and Find Full Text PDFJ Clin Exp Dent
December 2024
DDS. Titular Professor. Universidad de Antioquia U de A, Medellín, Colombia. Biomedical Stomatology Research Group, Universidad de Antioquia U de A, Medellín, Colombia.
Background: The RTK-VEGF4 receptor family, which includes VEGFR-1, VEGFR-2, and VEGFR-3, plays a crucial role in tissue regeneration by promoting angiogenesis, the formation of new blood vessels, and recruiting stem cells and immune cells. Machine learning, particularly graph neural networks (GNNs), has shown high accuracy in predicting these interactions. This study aims to predict drug-gene interactions of the RTK-VEGF4 receptor family in periodontal regeneration using graph neural networks.
View Article and Find Full Text PDFAdv Ther (Weinh)
January 2025
Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA.
Impaired bladder compliance secondary to congenital or acquired bladder dysfunction can lead to irreversible kidney damage. This is managed with surgical augmentation utilizing intestinal tissue, which can cause stone formation, infections, and malignant transformation. Co-seeded bone marrow mesenchymal stem cell (MSC)/CD34+ hematopoietic stem cell (HSPC) scaffolds (PRS) have been successful in regenerating bladder tissue.
View Article and Find Full Text PDFArch Rehabil Res Clin Transl
December 2024
Peninsula Hospital Center, Department of Speech-Language Pathology and Audiology, Far Rockaway, NY.
Objective: To determine if fatigue systematically effects the timing of swallowing events and to discuss underlying causes of fatigue other than peripheral neuromuscular fatigue.
Design: Pre-post within-subject repeated-measures design.
Setting: General acute care hospital and designated stroke center.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!