Genetic epilepsy is a common disorder with phenotypic variation, but the basis for the variation is unknown. Comparing the molecular pathophysiology of mutations in the same epilepsy gene may provide mechanistic insights into the phenotypic heterogeneity. GABRG2 is an established epilepsy gene, and mutations in it produce epilepsy syndromes with varying severities. The disease phenotype in some cases may be caused by simple loss of subunit function (functional haploinsufficiency), while others may be caused by loss-of-function plus dominant negative suppression and other cellular toxicity. Detailed molecular defects and the corresponding seizures and related comorbidities resulting from haploinsufficiency and dominant negative mutations, however, have not been compared. Here we compared two mouse models of GABRG2 loss-of-function mutations associated with epilepsy with different severities, Gabrg2 knockin (KI) and Gabrg2 knockout (KO) mice. Heterozygous Gabrg2 KI mice are associated with a severe epileptic encephalopathy due to a dominant negative effect of the mutation, while heterozygous Gabrg2 KO mice are associated with mild absence epilepsy due to simple haploinsufficiency. Unchanged at the transcriptional level, KI mice with severe epilepsy had neuronal accumulation of mutant γ2 subunits, reduced remaining functional wild-type subunits in dendrites and synapses, while KO mice with mild epilepsy had no intracellular accumulation of the mutant subunits and unaffected biogenesis of the remaining wild-type subunits. Consequently, KI mice with dominant negative mutations had much less wild-type receptor expression, more severe seizures and behavioural comorbidities than KO mice. This work provides insights into the pathophysiology of epilepsy syndrome heterogeneity and designing mechanism-based therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5179921 | PMC |
http://dx.doi.org/10.1093/hmg/ddw168 | DOI Listing |
Scand J Med Sci Sports
January 2025
Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.
Physical activity (PA) reduces the risk of negative mental and physical health outcomes in older adults. Traditionally, PA intensity is classified using METs, with 1 MET equal to 3.5 mL O·min·kg.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Chemistry, College of Science and Engineering, Western Washington University, 516 High Street, Bellingham, WA, 98229, USA.
Fluorescent lifetimes of dissolved organic matter (DOM) and associated physicochemical parameters were measured over 14 months in an estuary in Southern California, USA. Measurements were made on 77 samples from sites near the inlet, mid-estuary, and outlet to maximize the range of physicochemical variables. Time-resolved fluorescence data were well fit to a triexponential model with an intermediate lifetime component (τ: 1 to 5 ns), a long lifetime component (τ: 2 to 15 ns), and a short lifetime component (τ: < 1 ns).
View Article and Find Full Text PDFNPJ Breast Cancer
January 2025
Cancer Science Institute of Singapore, National University of, Singapore, Singapore.
Point mutations in the ligand binding domain of retinoic acid receptor alpha (RARα) are linked to breast fibroepithelial tumor development, but their role in solid tumorigenesis is unclear. In this study, we assessed the functional effects of known RARα mutations on retinoic acid signaling using biochemical and cellular assays. All tested mutants exhibited reduced transcriptional activity compared to wild-type RARα and showed a dominant negative effect, a feature associated with developmental defects and tumor formation.
View Article and Find Full Text PDFBackground: Autosomal dominant Alzheimer's Disease (ADAD) represents around 0.5% of all AD cases, and is caused by mutations in PSEN1, PSEN2 and APP genes. Gene expression studies can be useful for unravelling the physiopathology of AD and identifying potential biomarkers.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Guadalajara, Guadalajara, JA, Mexico.
Background: The ways in which diverse genetic variants interact to affect the phenotype of AD is poorly understood. The relatively consistent phenotype associated with specific mutations causing autosomal dominant AD (ADAD) provides the opportunity to study how other genetic variants contribute to disease manifestations.
Method: We performed an in-depth case study of a patient with the A431E PSEN1 mutation who had onset of progressive spastic paraplegia at age 20.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!