α7 Nicotinic Acetylcholine Receptor Relieves Angiotensin II-Induced Senescence in Vascular Smooth Muscle Cells by Raising Nicotinamide Adenine Dinucleotide-Dependent SIRT1 Activity.

Arterioscler Thromb Vasc Biol

From the Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (D.-J.L., F.H., M.N., H.F., F.-M.S.); and Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China (L.-S.Z.).

Published: August 2016

Objective: α7 nicotinic acetylcholine receptor (α7nAChR) is a subtype of nAChR and has been reported to be involved in hypertension end-organ damage. In this study, we tested the role of α7nAChR in angiotensin II (Ang II)-induced senescence of vascular smooth muscle cells (VSMCs).

Approach And Results: Expression of α7nAChR was not influenced by Ang II. Ang II induced remarkable senescent phenotypes in rodent and human VSMCs, including increased senescence-associated β-galactosidase activity, phosphorylation of H2A.X(Ser139), phosphorylation of Chk1(Ser317), reduced replication, and downregulation of proliferating cell nuclear antigen. Activation of α7nAChR with a selective agonist PNU-282987 blocked Ang II-induced senescence in cultured VSMCs. Moreover, PNU-282987 treatment attenuated the Ang II infusion-induced VSMC senescence in wild-type but not in α7nAChR(-/-) mice. PNU-282987 reduced the Ang II-enhanced reactive oxygen species, lipid peroxidation, and the expression of NADPH oxidase 1, NADPH oxidase 4, and p22(phox) in cultured VSMCs isolated from wild-type but not in α7nAChR(-/-) mice. Furthermore, PNU-282987 diminished Ang II-induced prosenescence signaling pathways, including p53, acetyl-p53, p21, and p16(INK4a). Finally, although α7nAChR activation by PNU-282987 did not affect the Ang II-induced downregulation of sirtuin 1 (SIRT1), it significantly increased intracellular NAD(+) levels, and thereby enhanced SIRT1 activity in an AMP-dependent protein kinase-independent manner. Depletion of SIRT1 by knockdown or SIRT1 inhibitor EX527 abrogated the antisenescence effect of α7nAChR against Ang II.

Conclusions: Our results demonstrate that activation of α7nAChR alleviates Ang II-induced VSMC senescence through promoting NAD(+)-SIRT1 pathway, suggesting that α7nAChR may be a potential therapeutic target for the treatment of Ang II-associated vascular aging disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.116.307157DOI Listing

Publication Analysis

Top Keywords

ang ii-induced
20
ii-induced senescence
12
ang
11
α7 nicotinic
8
nicotinic acetylcholine
8
acetylcholine receptor
8
senescence vascular
8
vascular smooth
8
smooth muscle
8
muscle cells
8

Similar Publications

Angiotensin II (Ang II)-induced hypertension increases afferent (AA) and efferent (EA) arteriole resistances via the actions of Ang II on the AT1 receptor. In addition to the increased interstitial levels of Ang II, the increased arterial pressure increases interstitial ATP concentrations. In turn, ATP acts on the purinergic receptors P2X1 and P2X7 to constrict the AA, preventing increases in plasma flow and single-nephron GFR (SNGFR).

View Article and Find Full Text PDF

Background: Renal interstitial fibrosis (RIF) is the primary pathological progression in chronic kidney disease (CKD). Given the constraints related to cost and adverse effects of current treatments, it is crucial to explore novel and efficacious therapeutic strategies. The purpose of this study was to elucidate the potential of Jiawei Danggui Buxue Decoction (JDBD) to reduce apoptosis and epithelial-mesenchymal transition (EMT) in RIF by regulating the Janus kinase 2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3) pathway.

View Article and Find Full Text PDF

K3.1 upregulation mediated by Ang II-induced JNK/AP-1 activation contributes to atrial fibrosis.

Cell Signal

March 2025

Department of Pathology and Pathophysiology, Suzhou Medical College of Soochow University, 199 Ren-ai Road, Suzhou 215123, Jiangsu, China; MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou 215123, Jiangsu, China. Electronic address:

Atrial fibrillation is strongly associated with an increased risk of embolism, stroke, and heart failure. Current therapeutic approaches often have limited efficacy, and controlling atrial fibrosis remains a critical objective for upstream therapies. The specific mechanisms driving atrial fibrosis remain incompletely understood.

View Article and Find Full Text PDF

Hypertension increases the prevalence of heart failure to a greater extent in women than in men. The fibrotic remodeling of the left ventricle is a major contributor to increased myocardial stiffness and eventual decrease in cardiac function. Injury-induced cardiac fibrosis can be prevented in the spontaneously hypertensive rat (SHR) by transient angiotensin converting enzyme inhibition (ACEi) in males.

View Article and Find Full Text PDF

Purpose: Small-interfering RNA (siRNA) therapy holds significant potential for treating cardiac injury; however, its clinical application is constrained by poor blood stability and insufficient cellular uptake. Extracellular vesicles (EVs) have emerged as an effective delivery system for siRNA in vivo; but their lack of specific cell or tissue-targeting ability remains a major challenge. Thus, we aimed to develop an EV-based delivery system capable of targeted delivery of therapeutic siRNA to injured cardiac tissue for cardiac repair.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!