The snake is the symbol of medicine due to its association with Asclepius, the Greek God of medicine, and so with good reasons. More than 725 species of venomous snakes have toxins specifically evolved to exert potent bioactivity in prey or victims, and snakebites constitute a public health hazard of high impact in Asia, Africa, Latin America, and parts of Oceania. Parenteral administration of antivenoms is the mainstay in snakebite envenoming therapy. However, despite well-demonstrated efficacy and safety of many antivenoms worldwide, they are still being produced by traditional animal immunization procedures, and therefore present a number of drawbacks. Technological advances within biopharmaceutical development and medicinal chemistry could pave the way for rational drug design approaches against snake toxins. This could minimize the use of animals and bring forward more effective therapies for snakebite envenomings. In this review, current stateof- the-art in biopharmaceutical antitoxin development is presented together with an overview of available bioinformatics and structural data on snake venom toxins. This growing body of scientific and technological tools could define the basis for introducing a rational drug design approach into the field of snakebite envenoming therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612822666160623073438 | DOI Listing |
BMJ Open
December 2024
Department of Pharmacology, University of Pretoria, Pretoria, South Africa.
Introduction: Snakebite envenomation has been declared a neglected tropical disease by the WHO since 2017. The disease is endemic in affected areas due to the lack of availability and access to antivenom, despite it being the standard treatment for snakebites. This challenge is perpetuated by the shortcomings of the regulatory systems and policies governing the management of antivenoms.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
January 2025
Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Headley Way, Headington, Oxford, OX3 9DU, UK.
Biochimie
January 2025
LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal. Electronic address:
This study focuses on the quaternary structure of the viper-secreted phospholipase A (PLA), a central toxin in viper envenomation. PLA enzymes catalyse the hydrolysis of the sn-2 ester bond of membrane phospholipids. Small-molecule inhibitors that act as snakebite antidotes, such as varespladib, are currently in clinical trials.
View Article and Find Full Text PDFToxicon
January 2025
Department of Emergency Medicine, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala.
Introduction: Snakebite envenomation is a significant global health issue, with India bearing a substantial burden. Despite the development of guidelines, knowledge gaps and lack of training persist among healthcare workers (HCWs), contributing to high morbidity and mortality. This study aimed to evaluate the impact of the Snake Bite Life Support (SBLS) workshop on HCWs' knowledge, practices, self-efficacy, and advocacy skills in snakebite management.
View Article and Find Full Text PDFTalanta
January 2025
Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia. Electronic address:
Envenomation accidents are usually diagnosed at the hospital through signs and symptoms assessment such as short breath, dizziness and vomiting, numbness, swilling, bruising, or bleeding around the affected site. However, this traditional method provides inaccurate diagnosis given the interface between snakebites and scorpion stings symptoms. Therefore, early determination of bites/stings source would help healthcare professionals select the suitable treatment for patients, thus improving envenomation management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!