AI Article Synopsis

  • Alzheimer's disease is marked by β-amyloid plaques and tau tangles, and new studies indicate that protein aggregation and inflammation are interconnected in neurodegeneration.
  • A new transgenic mouse model, called T5x, shows that while tau pathology increases significantly due to Aβ interaction, the actual Aβ plaque load decreases, which is unexpected.
  • This model reveals changes in microglial activity, including increased numbers and enhanced ability to clear Aβ, suggesting potential therapeutic strategies to boost microglial function for reducing plaque accumulation.

Article Abstract

Alzheimer disease is characterized by the accumulation of β-amyloid (Aβ) plaques and tau-laden neurofibrillary tangles. Emerging studies suggest that in neurodegenerative diseases, aggregation of one protein species can promote other proteinopathies and that inflammation plays an important role in this process. To study the interplay between Aβ deposition, tau pathology, and microgliosis, we established a new AD transgenic mouse model by crossing 5xfAD mice with Thy-Tau22 transgenic mice. The resulting 'T5x' mice exhibit a greater than three-fold increase in misfolded and hyperphosphorylated tau and further substantiates the hypothesis that Aβ accelerates tau pathology. Surprisingly, T5x mice exhibit a 40-50 % reduction in Aβ plaque load and insoluble Aβ species when compared with aged-matched 5xfAD littermates. T5x mice exhibit significant changes in cytokine production, an almost doubling of microglial number, and a dramatic shift in microglia activation state. Furthermore, T5x microglia exhibit increased phagocytic capacity that enhances the clearance of insoluble Aβ and decreasing plaque load. Therefore, our results suggest that strategies to increase the phagocytic ability of microglia can be employed to reduce Aβ and that tau-induced changes in microglial activation state can promote the clearance of Aβ.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4918195PMC
http://dx.doi.org/10.1186/s40478-016-0336-1DOI Listing

Publication Analysis

Top Keywords

mice exhibit
12
8
tau pathology
8
t5x mice
8
plaque load
8
insoluble aβ
8
activation state
8
mice
5
increased tauopathy
4
tauopathy drives
4

Similar Publications

Although considered an "eco-friendly" biodegradable plastic, polylactic acid (PLA) microplastic (PLA-MP) poses a growing concern for human health, yet its effects on male reproductive function remain underexplored. This study investigated the reproductive toxicity of PLA in male mice and its potential mechanisms. To this end, our in vivo and in vitro experiments demonstrated that after degradation in the digestive system, a significant number of PLA-MP-derived nanoparticles could penetrate the blood-testis barrier (BTB) and localize within the spermatogenic microenvironment.

View Article and Find Full Text PDF

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

Introduction: Lupus nephritis (LN) is one of the most frequent and serious organic manifestations of systemic lupus erythematosus (SLE). Autophagy, a new form of programmed cell death, has been implicated in a variety of renal diseases, but the relationship between autophagy and LN remains unelucidated.

Methods: We analyzed differentially expressed genes (DEGs) in kidney tissues from 14 LN patients and 7 normal controls using the GSE112943 dataset.

View Article and Find Full Text PDF

Approximately one in every 800 children is born with the severe aneuploid condition of Down Syndrome, a trisomy of chromosome 21. Low blood pressure (hypotension) is a common condition associated with DS and can have a significant impact on exercise tolerance and quality of life. Little is known about the factors driving this hypotensive phenotype and therefore therapeutic interventions are limited.

View Article and Find Full Text PDF

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!